- 积分
- 21997
- 回帖
- 0
- 西莫币
-
- 贡献
-
- 威望
-
- 存款
-
- 阅读权限
- 190
- 最后登录
- 1970-1-1
签到天数: 10 天 连续签到: 1 天 [LV.3]偶尔看看II
|
楼主 |
发表于 2018-7-29 11:36
|
显示全部楼层
来自: 中国浙江宁波
本帖最后由 hahafu 于 2018-7-29 12:22 编辑
2.冻结磁导率技术
式(3)已经明确了增量电感的定义,从此公式可以看出,两种途径可以求解增量电感,一种通过di/dt方法,一种是通过磁链λ进行求解。因此需要考虑如何准确计算饱和状态下的磁链。
如何考虑磁场饱和的影响是当前电机设计中一个亟待解决的重要问题。近年来提出的冻结磁导率技术越来越多地被应用到电机负载电磁性能和参数计算中。研究表明,冻结磁导率技术可以用来精确分离各种电机负载状态下的电磁分量,如磁场、磁链、电感、转矩、转矩波动、反电势和端电压、弱磁性能以及径向力等均可以用冻结磁导率技术预测,并用来辅助电机及其驱动控制系统的设计。因此,冻结磁导率技术为高性能电机的研发提供了一个全新的方法。本文只用此技术进行磁链和电感的求解,其他方面不做阐述。下面我们从磁链的定义出发,解释一下冻结磁导率的必要性。
如果N匝线圈中通过的磁通均是Φ 的话,则磁链的定义为λ=NΦ。而垂直通过一个截面的磁力线总量称为该截面的磁通量。
一般电机或变压器铁心截面上的磁通密度(也叫磁感应强度)B是均匀分布的,且垂直于各截面,则Φ=BA。电流产生磁场,但电流在不同介质中产生的B是不同的,为了表征这种特性,将不同的磁介质用一个系数μ来考虑,μ称为介质磁导率,则B与μ的比值只与产生磁场的电流有关了,即B=μH。进而可以得出:
λ=NΦ=NBA=μNHA (5)
铁磁材料的BH曲线如图2所示:
电机运行于负载点1时,铁心的磁导率为μall;当永磁体单独励磁产生磁链时电机运行于点2,铁心的磁导率为μPM;而当定子电枢电流单独励磁产生磁链时电机运行于点3,铁心的磁导率为μi。由图2可知,电机在负载点1时的磁通密度Ball=μall*Hall=μall*(HPM+Hi) =B(FP,PM)+B(FP,i)。可见Ball≠BPM+Bi,由此说明,电机负载点1的磁链不能线性的分解为2和3之和。即当电机负载磁路饱和时不能认为负载点的总磁链可以分解为永磁体单独励磁产生的磁链与定子电流单独励磁产生磁链两部分。因此在磁路饱和影响的情况下,若想准确计算出磁链,根据磁链定义需要准确的磁导率。而冻结磁导率的方法,能考虑磁场真实情况的同时,又将非线性场线性化。同时请大家注意,磁导率的定义并不是BH曲线的斜率,而是每一个点的割线斜率,所以冻结磁导率,仅仅是冻结了λ-i曲线上的一个点而已,比如将运行点1处的磁导率冻结之后,即μall被冻结了,则λ/I变为常数。
|
|