西莫电机圈

 找回密码
 立即注册

QQ登录

只需一步,快速开始

手机号码,快捷登录

手机号码,快捷登录

楼主: flyingmind

[分享] The Induction Machine Handbook 2002 by CRC Press LLC

[复制链接]

该用户从未签到

发表于 2012-1-13 15:04 | 显示全部楼层
CONTENTS
Preface
Contents
1 Induction Machines: an Introduction
1.1 Electric Energy and Induction Motors
1.2 A Historical Touch
1.3 Induction Machines in Applications
1.4 Conclusion
1.5 References
2 Construction Aspects and Operation Principles
2.1 Construction Aspects of Rotary IMs
2.1.1 The Magnetic Cores
2.1.2 Slot Geometry
2.1.3 IM Windings
2.1.4 Cage Rotor Windings
2.2 Construction Aspects of Linear Induction Motors
2.3 Operation Principles of IMs
2.4 Summary
2.5 References
3 Magnetic, Electric, and Insulation Materials for IM
3.1 Introduction
3.2 Soft Magnetic Materials
3.3 Core (Magnetic) Losses
3.4 Electrical Conductors
3.5 Insulation Materials
3.5.1 Random-Wound IM Insulation
3.5.2 Form-Wound Windings
3.6 Summary
3.7 References
4 Induction Machine Windings And Their M.M.Fs
4.1 Introduction
4.2 The Ideal Traveling M.M.F. of A.C. Windings
4.3 A Primitive Single-Layer Winding
4.4 A Primitive Two-Layer Chorded Winding
4.5 The mmf Harmonics For Integer Q
4.6 Rules For Designing Practical A.C. Windings
4.7 Basic Fractional Q Three-Phase A.C. Windings
4.8 Basic Pole-Changing Three-Phase A.C. Windings
4.9 Two-Phase A.C. Windings
4.10 Pole-Changing With Single-Phase Supply Induction Motors
4.11 Special Topics On A.C. Windings
4.12 The mmf of Rotor Windings
4.13 The “Skewing” mmf Concept
4.14 Summary
4.15 References
5 The Magnetization Curve and Inductance
5.1 Introduction
5.2 Equivalent Airgap to Account for Slotting
5.3 Effective Stack Length
5.4 The Basic Magnetisation Curve
5.4.1 The Magnetization Curve Via The Basic Magnetic Circuit
5.4.2 Teeth Defluxing By Slots
5.4.3 Third Harmonic Flux Modulation Due to Saturation
5.4.4 The Analytical Iterative Model (AIM)
5.5 The Emf in An A.C. Winding
5.6 The Magnetization Inductance
5.7 Summary
5.8 References
6 Leakage Inductances and Resistances
6.1 Leakage Fields
6.2 Differential Leakage Inductances
6.3 Rectandular Slot Leakage Inductance/Single Layer
6.4 Rectangular Slot Leakage Inductance/Two Layers
6.5 Rounded Shape Slot Leakage Inductance/Two Layers
6.6 Zig-Zag Airgap Leakage Inductances
6.7 End-Connection Leakage Inductance
6.8 Skewing Leakage Inductance
6.9 Rotor Bar and End Ring Equivalent Leakage Inductance
6.10 Basic Phase Resistance
6.11 The Cage Rotor Resistance
6.12 Simplified Leakage Saturation Corrections
6.13 Reducing the Rotor to Stator
6.14 Summary
6.15 References
7 Steady State Equivalent Circuit and Performance
7.1 Basic Steady-State Equivalent Circuit
7.2 Classification of Operation Modes
7.3 Ideal No-Load Operation
7.4 Short-Circuit (Zero Speed) Operation
7.5 No-Load Motor Operation
7.6. The Motor Mode of Operation
7.7 Generating to Power Grid
7.8 Autonomous Induction Generator Mode
7.9 The Electromagnetic Torque
7.10 Efficiency and Power Factor
7.11 Phasor Diagrams: Standard and New
7.12 Alternative Equivalent Circuits
7.13 Unbalanced Supply Voltages
7.14 One Stator Phase is Open
7.15 Unbalanced Rotor Windings
7.16 One Rotor Phase is Open
7.17 When Voltage Varies Around Rated Value
7.18 Summary
7.19 References
8 Starting and Speed Control Methods
8.1 Starting of Cage-Rotor Induction Motors
8.1.1 Direct Starting
8.1.2 Autotransformer Starting
8.1.3 Wye-Delta Starting
8.1.4 Softstarting
8.2 Starting of Wound-Rotor Induction Motors
8.3 Speed Control Methods for Cage-Rotor Induction Motors
8.3.1 The Voltage Reduction Method
8.3.2 The Pole-Changing Method
8.4 Variable Frequency Methods
8.4.1 V/F Scalar Control Characteristics
8.4.2 Rotor Flux Vector Control
8.5 Speed Control Methods for Wound Rotor Ims
8.5.1 Additional Voltage to The Rotor (The Doubly-Fed Machine)
8.6 Summary
8.7 References
9 Skin and On – Load Saturation Effects
9.1 Introduction
9.2 The Skin Effect
9.2.1 Single Conductor in Rectangular Slot
9.2.2 Multiple Conductors in Rectangular Slots: Series Connection
9.2.3 Multiple Conductors in Slot: Parallel Connection
9.2.4 The Skin Effect in the End Turns
9.3 Skin Effects By The Multilayer Approach
9.4 Skin Effect in the End Rings via The Multilayer Approach
9.5 The Double Cage Behaves Like a Deep Bar Cage
9.6 Leakage Flux Path Saturation–A Simplified Approach
9.7 Leakage Saturation And Skin Effects–A Comprehensive
Analytical Approach
9.7.1 The Skewing Mmf
9.7.2 Flux in The Cross Section Marked By AB (Figure 9.25)
9.7.3 The Stator Tooth Top Saturates First
9.7.4 Unsaturated Rotor Tooth Top
9.7.5. Saturated Rotor Tooth Tip
9.7.6 The Case of Closed Rotor Slots
9.7.7 The Algorithm
9.8 The FEM Approach
9.9 Performance of Induction Motors With Skin Effect
9.10 Summary
9.11 References
10 Airgap Field Space Harmonics, Parasitic Torques, Radial Forces,
and Noise
10.1 Stator mmf Produced Airgap Flux Harmonics
10.2 Airgap Field of A Squirrel Cage Winding
10.3 Airgap Conductance Harmonics
10.4 Leakage Saturation Influence on Airgap Conductance
10.5. Main Flux Saturation Influence on Airgap Conductance
10.6 The Harmonics-Rich Airgap Flux Density
10.7 The Eccentricity Influence on Airgap Magnetic Conductance
10.8 Interactions of Mmf (or Step) Harmonics and
Airgap Magnetic Conductance Harmonics
10.9 Parasitic Torques
10.9.1 When Do Asynchronous Parasitic Torques Occur?
10.9.2 Synchronous Parasitic Torques
10.9.3 Leakage Saturation Influence on Synchronous Torques
10.9.4 The Secondary Armature Reaction
10.9.5 Notable Differences Between Theoretical
and Experimental Torque/Speed Curves
10.9.6 A Case Study: Ns/Nr = 36/28, 2p1 = 4, Y/τ = 1 and 7/9; M = 3 [7]
10.9.7 Evaluation of Parasitic Torques By Tests (After [1])
10.10 Radial Forces and Electromagnetic Noise
10.10.1 Constant Airgap (No Slotting, No Eccentricity)
10.10.2 Influence of Stator/Rotor Slot Openings, Airgap Deflection
and Saturation
10.10.3 Influence of Rotor Eccentricity On Noise
10.10.4 Parallel Stator Windings
10.10.5 Slip-Ring Induction Motors
10.10.6Mechanical Resonance Stator Frequencies
10.11 Summary
10.12 References
11 Losses in Induction Machines
11.1 Loss Classifications
11.2 Fundamental Electromagnetic Losses
11.3 No-Load Space Harmonics (Stray No-Load) Losses
in Nonskewed IMs
11.3.1 No-Load Surface Core Losses
11.3.2 No-Load Tooth Flux Pulsation Losses
11.3.3 No-Load Tooth Flux Pulsation Cage Losses
11.4 Load Space Harmonics (Stray Load) Losses in Nonskewed IMs
11.5 Flux Pulsation (Stray) Losses in Skewed Insulated Bars
11.6 Interbar Current Losses in Noninsulated Skewed Rotor Cages
11.7 No-Load Rotor Skewed Noninsulated Cage Losses
11.8 Load Rotor Skewed Noninsulated Cage Losses
11.9 Rules to Reduce Full Load Stray (Space Harmonics) Losses
11.10 High Frequency Time Harmonics Losses
11.10.1 Conductor Losses
11.10.2 Core Losses
11.10.3 Total Time Harmonics Losses
11.11 Computation of Time Harmonics Conductor Losses
11.12 Time Harmonics Interbar Rotor Current Losses
11.13 Computation of Time Harmonics Core Losses
11.13.1 Slot Wall Core Losses
11.13.2 Zig-Zag Rotor Surface Losses
11.14 Loss Computation by Fem
11.15 Summary
11.16 References
12 Thermal Modeling and Cooling
12.1 Introduction
12.2 Some Air Cooling Methods for IMs
12.3 Conduction Heat Transfer
12.4 Convection Heat Transfer
12.5 Heat Transfer by Radiation
12.6 Heat Transport (Thermal Transients) in a Homogenous Body
12.7 Induction Motor Thermal Transients at Stall
12.8 Intermittent Operation
12.9 Temperature Rise (Ton) and Fall (Toff) Times
12.9 More Realistic Thermal Equivalent Circuits for IMs
12.10 A Detailed Thermal Equivalent Circuit for Transients
12.11 Thermal Equivalent Circuit Identification
12.12 Thermal Analysis Through FEM
12.13 Summary
12.14 References
13 Induction Machine Transients
13.1 Introduction
13.2 The Phase Coordinate Model
13.3 The Complex Variable Model
13.4 Steady-State by The Complex Variable Model
13.5 Equivalent Circuits for Drives
13.6 Electrical Transients with Flux Linkages as Variables
13.7 Including Magnetic Saturation in The Space Phasor Model
13.8 Saturation and Core Loss Inclusion into The State-Space Model
13.9 Reduced Order Models
13.9.1 Neglecting Stator Transients
13.9.2 Considering Leakage Saturation
13.9.3 Large Machines: Torsional Torque
13.10 The Sudden Short-Circuit at Terminals
13.11 Most Severe Transients (so far)
13.12 The abc−dq Model for PWM Inverter Fed IMs
13.13 First Order Models Of IMs for Steady-State Stability
in Power Systems
13.14 Multimachine Transients
13.15 Subsynchronous Resonance (SSR)
13.16 The M/Nr Actual Winding Modeling for Transients
13.17 Summary
13.18 References
14 Motor Specifications and Design Principles
14.1 Introduction
14.2 Typical Load Shaft Torque/Speed Envelopes
14.3 Derating
14.4 Voltage and Frequency Variation
14.5 Induction Motor Specifications for Constant V/F
14.6 Matching IMs to Variable Speed/Torque Loads
14.7 Design Factors
14.8 Design Features
14.9 The Output Coefficient Design Concept
14.10 The Rotor Tangential Stress Design Concept
14.11 Summary
14.12 References
15 IM Design Below 100 kW and Constant V and f
15.1 Introduction
15.2 Design Specifications by Example
15.3 The Algorithm
15.4 Main Dimensions of Stator Core
15.5 The Stator Winding
15.6 Stator Slot Sizing
15.7 Rotor Slots
15.8 The Magnetization Current
15.9 Resistances and Inductances
15.10. Losses and Efficiency
15.11 Operation Characteristics
15.12 Temperature Rise
15.13 Summary
15.14 References
16 Induction Motor Design Above 100kW and Constant V/f
16.1 Introduction
16.2 High Voltage Stator Design
16.3 Low Voltage Stator Design
16.4 Deep Bar Cage Rotor Design
16.5 Double Cage Rotor Design
16.6 Wound Rotor Design
16.7 IM with Wound Rotor-Performance Computation
16.8 Summary
16.9 References
17 Induction Machine Design for Variable Speed
17.1 Introduction
17.2 Power and Voltage Derating
17.3 Reducing the Skin Effect in Windings
17.4 Torque Pulsations Reduction
17.5 Increasing Efficiency
17.6 Increasing the Breakdown Torque
17.7 Wide Constant Power Speed Range Via Voltage Management
17.8 Design for High And Super-High Speed Applications
17.8.1 Electromagnetic Limitations
17.8.2 Rotor Cooling Limitations
17.8.3 Rotor Mechanical Strength
17.8.4 The Solid Iron Rotor
17.8.5 21 Kw, 47,000 Rpm, 94% Efficiency With Laminated Rotor [11]
17.9 Sample Design Approach for Wide Constant Power Speed Range
Solution Characterization
17.10 Summary
17.11 References
18 Optimization Design
18.1 Introduction
18.2 Essential Optimization Design Methods
18.3 The Augmented Lagrangian Multiplier Method (ALMM)
18.4 Sequential Unconstrained Minimization
18.5 A Modified Hooke–Jeeves Method
18.6 Genetic Algorithms
18.6.1 Reproduction (evolution and selection)
18.6.2 Crossover
18.6.3 Mutation
18.6.4 GA Performance Indices
18.7 Summary
18.8 References
19 Three Phase Induction Generators
19.1 Introduction
19.2 Self-Excited Induction Generator (SEIG) Modeling
19.3 Steady State Performance of SEIG
19.4 The Second Order Slip Equation Model for Steady State
19.5 Steady State Characteristics of SEIG for Given Speed And Capacitor
19.6 Parameter Sensitivity in SEIG Analysis
19.7 Pole Changing Seigs
19.8 Unbalanced Steady State Operation Of SEIG
19.8.1 The Delta-Connected SEIG
19.8.2 Star-Connected SEIG
19.8.3. Two Phase Open
19.9 Transient Operation Of SEIG
19.10 SEIG Transients with Induction Motor Load
19.11 Parallel Operation of Seigs
19.12 The Doubly-Fed IG Connected to the Grid
19.12.1. Basic Equations
19.12.2 Steady State Operation
19.13 Summary
19.14 References
20 Linear Induction Motors
20.1 Introduction
20.2 Classifications and Basic Topologies
20.3 Primary Windings
20.4 Transverse Edge Effect in Double-Sided LIM
20.5 Transverse Edge Effect in Single-Sided LIM
20.6 A Technical Theory of LIM Longitudinal End Effects
20.7 Longitudinal End-Effect Waves and Consequences
20.8 Secondary Power Factor and Efficiency
20.9 The Optimum Goodness Factor
20.10 Linear Flat Induction Actuators
20.11 Tubular LIAs
20.12 Short-Secondary Double-Sided LIAs
20.13 Linear Induction Motors for Urban Transportation
20.14 Transients and Control of LIMs
20.15 Electromagnetic Induction Launchers
20.16 Summary
20.17 Selected References
21 Super-High Frequency Models and Behaviour of IMs
21.1 Introduction
21.2 Three High Frequency Operation Impedances
21.3 The Differential Impedance
21.4 Neutral and Common Mode Impedance Models
21.5 The Super-High Frequency Distributed Equivalent Circuit
21.6 Bearing Currents Caused by PWM Inverters
21.7 Ways to Reduce PWM Inverter Bearing Currents
21.8 Summary
21.9 References
22 Testing of Three-Phase IMs
22.1 Loss Segregation Tests
22.1.1 The No-Load Test
22.1.2 Stray Losses From No-Load Overvoltage Test
22.1.3 Stray Load Losses From the Reverse Rotation Test
22.1.4 The Stall Rotor Test
22.1.5 No-Load and Stall Rotor Tests with PWM Converter Supply
22.1.6 Loss Measurement by Calorimetric Methods
22.2 Efficiency Measurements
22.2.1 IEEE Standard 112–1996
22.2.2 IEC Standard 34–2
22.2.3 Efficiency Test Comparisons
22.2.4 The Motor/Generator Slip Efficiency Method
22.2.5 The PWM Mixed Frequency Temperature Rise
and Efficiency Tests
22.3 The Temperature-Rise Test Via Forward Shortcircuit (FSC) Method
22.4 Parameter Estimation Tests
22.4.1 Parameter Calculation From No Load And Standstill Tests
22.4.2 The Two Frequency Standstill Test
22.4.3 Parameters From Catalogue Data
22.4.4 Standstill Frequency Response Method
22.4.5 The General Regression Method For Parameters Estimation
22.4.6 Large IM Inertia and Parameters From Direct Starting Acceleration
and Deceleration Data
22.5. Noise and Vibration Measurements: From No-Load to Load
22.5.1 When on-Load Noise Tests Are Necessary?
22.5.2 How to Measure the Noise On-Load
22.6 Summary
22.7 References
23 Single-Phase Induction Machines: The Basics
23.1 Introduction
23.2 Split-Phase Induction Motors
23.3 Capacitor Induction Motors
23.3.1 Capacitor-Start Induction Motors
23.3.2 The Two-Value Capacitor Induction Motor
23.3.3 Permanent-Split Capacitor Induction Motors
23.3.4 Tapped-Winding Capacitor Induction Motors
23.3.5 Split-Phase Capacitor Induction Motors
23.3.6 Capacitor Three-Phase Induction Motors
23.3.7 Shaded-Pole Induction Motors
23.4 The Nature of Stator-Produced Airgap Field
23.5 The Fundamental M.M.F. and Its Elliptic Wave
23.6 Forward-Backward M.M.F. Waves
23.7 The Symmetrical Components General Model
23.8 The d-q Model
23.9 The d-q Model Of Star Steinmetz Connection
23.10 Summary
23.11 References
24 Single-Phase Induction Motors: Steady State
24.1 Introduction
24.2. Steady State Performance with Open Auxiliary Winding
24.3 The Split Phase and The Capacitor IM: Currents And Torque
24.4 Symmetrization Conditions
24.5 Starting Torque and Current Inquiries
24.6 Typical Motor Characteristic
24.7 Non-Orthogonal Stator Windings
24.8 Symmetrisation Conditions for Non-Orthogonal Windings
24.9 M.M.F. Space Harmonic Parasitic Torques
24.10 Torque Pulsations
24.11 Inter-Bar Rotor Currents
24.12 Voltage Harmonics Effects
24.13 The Doubly Tapped Winding Capacitor IM
24.14 Summary
24.15 References
25 Single-Phase IM Transients
25.1 Introduction
25.2 The d-q Model Performance in Stator Coordinates
25.3 Starting Transients
25.4 The Multiple Reference Model for Transients
25.5 Including the Space Harmonics
25.6 Summary
25.7 References
26 Single-Phase Induction Generators
26.1 Introduction
26.2 Steady State Model and Performance
26.3 The d-q Model For Transients
26.4 Expanding the Operation Range with Power Electronics
26.5 Summary
26.6 References
27 Single-Phase IM Design
27.1 Introduction
27.2 Sizing the Stator Magnetic Circuit
27.3 Sizing the Rotor Magnetic Circuit
27.4 Sizing the Stator Windings
27.5 Resistances and Leakage Reactances
27.6 The Magnetization Reactance X mm
27.7 The Starting Torque and Current
27.8 Steady State Performance Around Rated Power
27.9 Guidelines for a Good Design
27.10 Optimization Design Issues
27.11 Summary
27.12 References
28 Single-Phase IM Testing
28.1 Introduction
28.2 Loss Segregation the Split Phase and Capacitor Start IMs
28.3 The Case of Closed Rotor Slots
28.4 Loss Segregation the Permanent Capacitor IM
28.5 Speed (slip) Measurements
28.6 Load Testing
28.7 Complete Torque-Speed Curve Measurements
28.8 Summary
28.9 References
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2012-3-30 01:27 | 显示全部楼层
东西值……
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

签到天数: 2 天

连续签到: 1 天

[LV.1]初来乍到

发表于 2013-12-21 12:25 | 显示全部楼层
这本书是不是有第二版,《the induction machines design handbook》,好像里面有好多错误
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2015-1-22 13:20 | 显示全部楼层
不知道这本书是第三方重新编辑上去的,还是原版?看了以后,里面有好多错误的地方,主要是些编辑错误
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2015-1-23 00:09 | 显示全部楼层
第一版和第二版我都有 第一版的编辑错误第二版基本都没改过来有点失望 不过书通俗易懂很不错
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2015-2-11 10:27 | 显示全部楼层
收藏下,以后分多了再下。。。。。。太贵了
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2015-5-20 20:31 | 显示全部楼层
慢慢看,可以看懂的
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2016-3-8 21:53 | 显示全部楼层
好资料,就是英文的不太好读。
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2016-8-26 11:06 | 显示全部楼层
楼猪啊,是好东西,但我心疼大洋啊。
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2016-8-26 11:11 | 显示全部楼层
亲爱的楼猪啊,我的16个大洋没了。但是感谢哦!
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

签到天数: 27 天

连续签到: 2 天

[LV.4]偶尔看看III

发表于 2016-11-4 10:06 | 显示全部楼层
西莫论坛的好处之一,在于各种偏僻的书都能找到
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2018-8-30 15:45 | 显示全部楼层
谢谢分享        
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

发表于 2019-7-21 20:58 | 显示全部楼层
请问这本感应电机有对应的译本么
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|西莫电机圈 ( 浙ICP备10025899号-3 浙公网安备:33028202000436号

GMT+8, 2024-11-25 14:11 , Processed in 0.113483 second(s), 21 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表