sduee 发表于 2015-1-18 11:38

ASSM-1算例电动机状态下的匝间短路有限元分析

本帖最后由 sduee 于 2015-1-18 14:12 编辑


ASSM-1算例电动机状态下的匝间短路有限元分析

补充内容 (2015-1-19 17:38):
对以上两个附件作了一下修改,最终结果看 [匝间短路new.pdf] 和

sduee 发表于 2015-1-19 13:25

本帖最后由 sduee 于 2015-1-19 17:47 编辑

修改了一下,以这个附件为准。

sduee 发表于 2015-1-18 13:35

本帖最后由 sduee 于 2015-1-18 13:57 编辑

ASSM-1算例电动机状态下的匝间短路有限元分析beta@mail.sdu.edu.cn   Mon.,15 2015 一、问题描述
       算例位于 Ansoft程序文件夹下的\Examples\RMxprt\assm\assm-1.mxwl,自动生成Maxwell 2D工程。
       a) 故障状态
       设电机平稳运行,在某时刻(t=0.1s),A相绕组出现匝间短路,即某槽某层的导体束内(Number of Conductors=26),有约1/3的导体(26/3≈9束导体)被短路出了A相绕组。(同时也意味着:距离此槽一个节距上的另一个槽内的9束导体也被out了,这18束导体,构成了一个单相9匝短路线圈)
       b) 参数描述
       A相绕组每根线棒内的导体数:26(即Number of Conductors)
       A相绕组的总导体线棒数:16 (如图1)
       A相绕组匝间短路的导体数:9
       A相绕组的总电阻:2ohm
       A相绕组形成匝间短路线圈的电阻:0.043ohm(2ohm/16/26*9=0.043ohm)
       A相绕组的总端部漏感:0.00051H
       A相绕组形成匝间短路线圈的端部电感:0.000011H(0.00051H/16/26*9=0.000011H)


      
图1A相绕组的所有线棒        c) 模型描述
       如图1所示,红色虚线中为A相的一个导体棒。它如果出现匝间短路,那么其有效导体数必然发生改变(由26变为17)。同时会造成黄色虚线中的导体棒有效导体数发生改变。同时,会在两个槽内,形成一个新的短路线圈绕组。
       基于以上考虑,建立如图2所示的新模型。将匝间短路的导体解列成两个子导体。如图2所示,绿色的为不短路的导体(其Number of Conductors=17),红色的为发生短路的导体(其Number of Conductors=9)。同理,与短路槽串联的另一个槽内的部分导体,也是这样分割成红绿两个子导体。各子导体的定义方向与原来母导体的方向一致。
       在绕组构成上,绿色子导体可以像原母导体一样,照常连入A相绕组PhaseA,如图3所示。而两个红色子导体,则构成一个独立的绕组winding_sc ,如图4所示。
       绕组连接上,短路前,PhaseA与winding_sc是串联的;短路后,winding_sc的两端并不是被直接短接,短路点接触并不紧密,难免有一点接触电阻,即winding_sc被一个“接触电阻”短路。姑且设这个接触电阻为winding_sc电阻的1/10,即0.004ohm(当然也可以更小),如图5所示。


图2将短路导体拆出的新模型


图3新的A相绕组PhaseA                      图4 短路绕组winding_sc


图5PhaseA与winding_sc的连接方式二、具体操作
       a) 有限元模型的更改
       具体的2D绘图更改,以及绕组的重新分组,这里不作详细介绍,可参考上面的分析,自己完成。
需要注意的一点是,既然是短路,就一定有机电暂态的缓冲过程,要在Maxwell 2D 工程树MotionSetup中的选项栅里,选中Consider Mechanical Trans一项,则机电暂态的输入数据可以自动得到,它们决定了暂态分析里的“转矩方程”。为模拟电机从零速开始的动态过程,将初始角速度置零,如图6。


图6设置机械暂态参数
       b) 外电路的更改
       由RMxprt模型自动导成的Maxwell模型时,电机的外电路也自动生成。原模型的外电路如图7所示。图8给出了原三相绕组的局部放大图。可以看出,原三相绕组的三相是对称的,各相都有三个串联部件,即:1. 绕组本身(即有限元中的几何模型);2. 绕组的电阻(有限元几何模型中无法考虑,所以只能在外电路中考虑);3. 绕组的端部漏感。


图7原电机的外电路


图8局部放大的原电机的三相绕组接法
       显然,为考虑电机的A相绕组的改变以及短路绕组winding_sc,这个电路拓扑需要改变。根据以上分析,改变后的绕组接法如图9所示。


图9加入“短路绕组”和“接触电阻”后的绕组接法图
       同时,为了控制开关S_sc的通断,需要再加上控制S_sc的电路,如图10所示。这个电路使开关S_sc在电机启动100ms后,发生匝间短路。


图10短路开关S_sc的控制电路
       对图10中的模块进行以下说明。首先是开关的属性模块,为了与逆变桥中的开关器件相区别,这里新定义了一个专门的开关模型sc_switcher_model,其属性如图11所示。其通态电阻Ron=0.000001ohm;关断态电阻为1e6ohm,是个很大的值。控制信号sc_signal大于0V时,开关导通;小于0时,开关关闭。


图11图10中开关模型sc_switcher_model的属性
       然后是图9中的S_sc开关模块的设置,其属性如图12所示。它的开关模型MOD(或称开关逻辑)来自图10中的sc_switcher_model,控制信号ID_V来自图10中的电压表Isc_signal。


图12图9中S_sc开关的属性
       剩下的就是图10中的触发源V_sc,它的属性如图13所示。Td给出了短路时刻为0.1s。Period和Pw取得尽量大,超过仿真时长,即意味着在0.1s时,触发信号从-1V变到1V后,一直保持到仿真结束。


      图13图10中触发源V_sc的属性
       c) 外电路的更新
       经过以上步骤的到的外电路如图14所示,可以对比一下它相对于图7,有什么新的改变。为了在Maxwell 2D中更新外电路的拓扑和配置,需要进行以下操作:①在Circuit Editor里保存一下新的电路。② 如图15所示,选择Export Netlist,将新的电路保存为c:\sc_circuit.sph文件。③退出Circuit Editor。 ④如图16所示,在Maxwell 2D中导入c:\sc_circuit.sph文件。


图14新的电路拓扑


图15导出新的电路拓扑到外部*.sph文件


   图16从Maxwell 2D的Excitations中更新外电路
       d) 修改求解设置
       仅修改一项,其它保持默认。即把Solve Setup中的求解时间,由原来的0.04s,延长到0.2s。即可求解了,如图17所示。


图17求解设置修改
三、分析结果
       a) 理想的分析结果
       电机由0速起动,在60ms左右进入稳态,100ms时发生匝间短路,保持到200ms。结果如下所示。


图18全过程转矩曲线(100ms时发生短路)


图19全过程转速曲线(100ms时发生短路)


图20全过程定子电流曲线(100ms时发生短路)


图21匝间短路所构成的短路线圈的电流波形(100ms时发生短路)
       图18给出了转矩曲线,可以看出,100ms以后,转矩开始了周期性的大幅振动。
       图19是转速曲线,因为是恒转速的负载,所以转速在短路后变化不明显,但仍有介于+13rmp和-15rmp之间的波动。
       图20是定子电流曲线,短路后,三相电流都增大了,短路相的电流与另外两相的电流波形相比,略有改变。
       图21是匝间短路所构成的短路线圈的波形,短路后其电流是非常大的,可想而知,短路线圈是承受不了这么大的电流的,必将烧毁并开路。
       因此,需要对结果进行修正,在外电路中加上winding_sc短路后烧毁并断路的逻辑。

       b) 修正的分析结果
       设winding_sc在短路半个周期后烧毁,即在110ms之后烧毁并开路。
       为实现上述假设。可以对图5进行修改,即在winding_sc的近端串入一个控制开关,使其在110ms时断开,修改后的接法如图22所示,实际的电路接线如图23所示。

      
图22串入开路电阻后的接法


图23短路绕组串入开路开关后的电路
       分析结果如下:


图24转矩曲线


图25电流曲线


图26转速曲线


图27短路绕组内的电流

补充内容 (2015-1-19 13:41):
分析的是同槽内的匝间短路,毕竟没有端部处发生的跨槽匝间短路现象明显。这是一个遗憾。还有,另一个槽选错方向了。更新再补充。

namewangxiang 发表于 2015-1-19 09:59

楼主说的还是很详细啊,不知道楼主有没有比较过单相短路和两相三相短路定子电流大小啊。

sduee 发表于 2015-1-19 13:23

namewangxiang 发表于 2015-1-19 09:59
楼主说的还是很详细啊,不知道楼主有没有比较过单相短路和两相三相短路定子电流大小啊。

没有分析过,我不研究这些方面。帮朋友写的过程文档,只是写写过程并拿来分享一下而已。

joyevery 发表于 2015-1-23 13:00

给师兄顶帖子~~~~{:soso_e160:}

xiaodu 发表于 2015-1-29 08:48

楼主有水平,谢谢分享{:soso_e179:}

smmutou 发表于 2015-4-12 10:25

感谢前辈将自己的工作步骤详细地分享给我们。在这里也想请问前辈:您所用的模型是利用Rxmprt自动生成的吗?您谈到的“Consider Mechanical Trans”一项中自动生成的参数是不是只有自动生成的模型才会有?是否可以让发电机从一开始运行就进入短路状态呢?

sduee 发表于 2015-4-12 21:18

smmutou 发表于 2015-4-12 10:25
感谢前辈将自己的工作步骤详细地分享给我们。在这里也想请问前辈:您所用的模型是利用Rxmprt自动生成的吗? ...

Mechanical Trans其实就是"开启转矩方程",每一个参数都对应转矩方程中的参数, 里面无非是一些转动惯量,阻尼系数等等. 我的模型是RMxprt生成的, 短路时刻在外电路里设置,可以一开始就短路.

smmutou 发表于 2015-4-13 12:14

sduee 发表于 2015-4-12 21:18
Mechanical Trans其实就是"开启转矩方程",每一个参数都对应转矩方程中的参数, 里面无非是一些转动惯量,阻 ...

谢谢前辈的解答!

liutianzhi 发表于 2016-1-12 21:35

你讲的这个例子是一条并联支路吗?要是有多条并联支路,短路的哪几匝的电感电阻该怎么考虑啊?是不是为了保证短路前这相的电阻电感不变,先求出短路后的电阻电感,然后再求出被短路部分的电阻电感呢?

sduee 发表于 2016-1-13 14:25

liutianzhi 发表于 2016-1-12 21:35
你讲的这个例子是一条并联支路吗?要是有多条并联支路,短路的哪几匝的电感电阻该怎么考虑啊?是不是为了保 ...

其实每一个“相绕组”,都是由一个个的独立线圈串并联而成:
1)对于一个并联支路,只要你把短路的那个线圈独立建成一个绕组As,然后剩下不短路的线圈再单独建成绕组An,然后两个线圈串联,外电路中As+An就构成了原来的A相绕组。
2)对于多个并联支路,也可以这样解列。A相分成A1,A2,A3,A4四个并联之路,每个支路单独建立绕组,在外电路中并联后就是A相。A1支路再分成发生短路的A1s绕组和不短路的A1n两个绕组串联。

发生短路时,外电路中用开关短掉As或A1s就可以了。

电抗是按照As,An的匝数自然分配,当然要计及互感。对于电阻,算好比例,分别串到As,An中去。

sduee 发表于 2016-1-13 14:33

liutianzhi 发表于 2016-1-12 21:35
你讲的这个例子是一条并联支路吗?要是有多条并联支路,短路的哪几匝的电感电阻该怎么考虑啊?是不是为了保 ...

有限元建模的时候,短路槽内,就不再是简单的单层或双层绕组了。而是要把短路线圈解离出来。就是把某一层绕组,分成短路层、非短路层。这样,一个双层绕组的短路槽内,实际上是3层绕组。即把原来故障层里的一个线块,分成了两个小线块模型了,即实现解离。

liutianzhi 发表于 2016-1-21 10:17

sduee 发表于 2016-1-13 14:33
有限元建模的时候,短路槽内,就不再是简单的单层或双层绕组了。而是要把短路线圈解离出来。就是把某一层 ...

谢谢你的讲解,再请教你问题,就是永磁同步电动机用外电路进行仿真,motion setup里面转速、转矩、转动惯量和阻尼系数怎么设置,转速可以设为0吗?然后负载转矩每次改后单位就不能改变,而且负载转矩自动生成的表达式里面的都是什么意思。
其实永磁同步电动机用电压源仿真我就有些不理解,直接加电压源是不能启动的啊?然后要是我用RM导为二维生成的外电路,电机模型的话我要把转子换为我自己画的,转子结果不一样,极槽配合都一样,其它的不变,请问外电路需要改参数吗?

liutianzhi 发表于 2016-1-21 10:19

sduee 发表于 2016-1-13 14:25
其实每一个“相绕组”,都是由一个个的独立线圈串并联而成:
1)对于一个并联支路,只要你把短路的那个 ...

解答得很详细,谢谢啊

sduee 发表于 2016-1-21 11:35

liutianzhi 发表于 2016-1-21 10:17
谢谢你的讲解,再请教你问题,就是永磁同步电动机用外电路进行仿真,motion setup里面转速、转矩、转动惯 ...

我只能回答      T1+Te=阻尼*Omega+转动惯量*d(Omega)/dt

13683616736 发表于 2016-4-14 10:52

sduee 发表于 2016-1-13 14:33
有限元建模的时候,短路槽内,就不再是简单的单层或双层绕组了。而是要把短路线圈解离出来。就是把某一层 ...

你好 ,我现在不太明白的是在有限元模型中绕组的分离,是在建立模型的时候就把短路槽建成3个部分吗?还有关于外电路的设置中,短路绕组被短路后,接地电阻与被短路的绕组都会有电流通过吧?还是因为接地电阻太小,使得被短路绕组中几乎没有电流通过,可以不计及考虑?

sduee 发表于 2016-4-15 18:04

13683616736 发表于 2016-4-14 10:52
你好 ,我现在不太明白的是在有限元模型中绕组的分离,是在建立模型的时候就把短路槽建成3个部分吗?还有 ...

你好,是建模时就把短路槽建成3个部分,还有被短路出来的绕组,虽然和原系统没了电的联系,仍有暂态过程和磁的耦合。所以根据实际情况设置。

raozhimeng 发表于 2017-4-6 00:11

高手 高手 高手 高手 高手 ,造福大家

zzzlu 发表于 2018-4-27 14:08

您好,首先非常感谢您的分享,我是一名研一学生,研究电机故障诊断方向,现在使用magnet有限元软件建匝间短路电机模型,我在把定子槽的导体拆分上不太清楚具体怎么操作,希望可以得到您的指导,再次感谢您的分享,过程很详细,对我有很大的帮助,谢谢您!
页: [1] 2 3 4 5
查看完整版本: ASSM-1算例电动机状态下的匝间短路有限元分析