找回密码
 立即注册

QQ登录

只需一步,快速开始

手机号码,快捷登录

手机号码,快捷登录

Flux电机有限元分析教程西莫团购入口 | 奖励入口当当网购物入口 | 奖励入口欢迎使用!西莫论坛App开放下载Motor-CAD电机多物理域设计教材购买入口 | 奖励入口
★新会员论坛须知★《西莫电机技术》第39期发售火热进行中Flux电机电磁阀有限元分析教程团购入口 | 奖励入口论坛微信公众平台欢迎入驻
西莫电机及相关产品供需交流群开放邀请★ 论坛VIP会员申请 ★Motor-CAD.MANATEE电磁热振动噪声教程 | 奖励入口西莫团队欢迎您的加盟!
宣传推广合作请联系QQ:25941174西莫电机论坛微信群正式开放Flux变压器与电抗器有限元分析团购入口 | 奖励入口西莫电机论坛技术版区QQ群汇总
查看: 1304|回复: 5

[分享] 用MATLAB三步完成机器人搭建

[复制链接]

该用户从未签到

发表于 2020-8-2 17:32 | 显示全部楼层 |阅读模式 来自: 中国山东济南

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?立即注册

×
如果说机器人是一粒种子,那么《机器人大擂台》这档节目就是那个播种人。节目中,不同选手操纵着机器人,在擂台上各显神威 —— 冲撞、翻滚、撬杠、喷火等各种技能,总能令人眼花缭乱,同时点燃心中关于机器人的各种幻想。

如今的机器人应用广泛,机器人技术也开始源源不断地向人类活动的各个领域渗透,机器人分拣系统和随处可见的无人机。

例如机器人分拣系统,显著地提升了物流公司货物配送的效率。

另一个例子是无人机。如果说分拣机器人还属于各大物流公司的核心机密,如下凡天仙一般平日里难得一睹芳容,那无人机早已化身邻家女孩,平易近人地装点着我们的生活。

机器人的发展不会止步于此。2020年以来,新基建概念大热,其三大方向更是与机器人产业密切相关。教育机器人、送餐机器人、情感机器人及自动驾驶技术,都是机器人及自动化技术的下一个重要落地目标。

银河补习班里有句经典台词:“我的**,上的是全世界最好的补习班,银河补习班。”今天,MATLAB就为你带来宇宙最强机器人补习班,手把手教你如何建造属于自己的机器人!



许多人认为 MATLAB 是数学或教育软件。事实上,MATLAB 最初被广泛采用是在控制工程领域,随后开发了多种技术领先的算法包和工具箱,并被全球各大高校广泛采纳为数学教育软件。即将进入机器人补习班的你,准备好了吗?
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过

该用户从未签到

 楼主| 发表于 2020-8-2 17:35 | 显示全部楼层 来自: 中国山东济南
第一步:安装机器人工具箱


工欲善其事,必先利其器,我们首先需要安装 MATLAB 的机器人工具箱(Robotics System Toolbox)。我们既可以上MathWorks 官网下载,又可以通过打开 MATLAB 主界面,单击“添加项”(Add-Ons) 选项进行操作。

MATLAB1.jpg

然后在搜索栏中输入 “Robotics System Toolbox”,进入第一个搜索结果即可安装。


MATLAB2.jpg

操作完成后,打开 MATLAB 并输入
>> ver

如果能找到如下信息
Robotics System Toolbox       Version 2.x         (Rxxxxx)

那么恭喜,机器人工具箱已安装成功!
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

 楼主| 发表于 2020-8-2 17:41 | 显示全部楼层 来自: 中国山东济南
第二步:你想要什么样的机器人?建模是关键

我们要设计的第一个机器人,是一条可以自由转动的机械手臂。在 MATLAB 中,机械手臂由不同的连杆(Link)通过关节(Joint)拼接而成。依活动状态分,关节又可分为旋转型和平移型,其意义顾名思义 。

MATLAB3.jpg

为简单起见,我们先创建一个三连杆的机械臂:


%设置 DH 参数
dhparams = [0     pi/2  0     0;
            0.4318  0       0       0;
            ];

robot = rigidBodyTree; % 初始化机械臂
body1 = rigidBody( body1 ); % 定义第一个连杆
jnt1 = rigidBodyJoint( jnt1 , revolute ); % 定义第一个关节
setFixedTransform(jnt1,dhparams(1,:), dh );
body1.Joint = jnt1; % 给底座加上关节
addBody(robot,body1, base ) % 定义机械臂为机器人的底座

% 添加第二、三只连杆
body2 = rigidBody( body2 );
jnt2 = rigidBodyJoint( jnt2 , revolute );
body3 = rigidBody( body3 );
jnt3 = rigidBodyJoint( jnt3 , revolute );
setFixedTransform(jnt2,dhparams(2,:), dh );
setFixedTransform(jnt3,dhparams(3,:), dh );
body2.Joint = jnt2;
body3.Joint = jnt3;



上面的 dhparams 是一个 n*4 矩阵(n 是机械臂的个数),被称为 DH 参数(Denavit–Hartenberg parameters)。dhparams 的每一行由 [a alpha d theta] 四个变量组成,它们分别表示:

a: 关节(垂直连杆方向的)偏移量

alpha: 关节扭曲角度(垂直于两个连杆构成的平面的角度)

d: 关节(朝着连杆方向的)伸长量

theta: 关节起始旋转角度(平行于两个连杆构成的平面的角度)

如果不小心忘了我们搭建的机器人长啥样,那么下面的命令

showdetails(robot)

可以帮助我们回忆起它的基本特征:


而输入下面的命令,我们即可一睹该机械手臂的庐山真面目:

addBody(robot,body2, body1 )
addBody(robot,body3, body2 )
show(robot); % 画图


MATLAB4.jpg

因为我们只搭建了最基本的连杆和关节,所以这个机械手臂难免有些瘦骨嶙峋。不过如果我们把上面的图片放大,就可以看到每个连杆、关节的名字、序号和类型具体信息:

MATLAB5.jpg

此外,我们还可以给连杆和关节赋予诸如质量、转动惯量、惯性矩阵之类的参数。实践出真知,理解以上概念最好的方式,就是逐个调整代码中的参数,观测结果变化。
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

 楼主| 发表于 2020-8-2 17:48 | 显示全部楼层 来自: 中国山东济南
第三步:看!它左手右手一个慢动作!

我们已经知道如何用 MATLAB 搭建一个简单的机器人了。然而这样搭建的机器人,和小朋友用积木搭建的玩具并无二致 —— 既然是用软件做成的机器人,我们自然希望它能动起来。我们以加拿大机器人公司 Kinova 的第三代机械臂为例,来看看 MATLAB 如何让这支麒麟臂动起来。


                               
登录/注册后可看大图


在 MATLAB 界面中输入
>> robot = loadrobot("kinovaGen3");
>> showdetails(robot)

我们可以看到输出如下

MATLAB1.jpg

不难看出,第三代 Kinova 是由 8 根连杆和 8 个关节拼接而成。如果我们要想知道某个具体连杆的信息,例如名叫 “Shoulder_Link” 的连杆, 依次输入

>> robot.getBody( Shoulder_Link ).Joint
>> robot.getBody( Shoulder_Link ).Joint.JointToParentTransform
>> robot.getBody( Shoulder_Link ).Joint.ChildToJointTransform


即可分别查询属于该连杆的关节,以及关节到母连杆和子连杆的转移矩阵。如此一来,我们就可以从这种方法重建出第三代 Kinova 机械臂了!

现在我们有两种方法可以让让机械臂动起来。第一种方法是通过变换关节旋转角度的方式,这种方法叫正运动学(Forward kinematics);第二种方法是通过给定每个连杆末端位置,这种方法叫逆运动学(Inverse kinematics)。正运动学可以很方便地对机械臂进行直接操控,而逆运动学则更有利于直接指定机械臂完成任务,例如抓取处于某位置的快递等等。这两种方法各有千秋。

有几何背景的读者知道,n 维欧式空间中的刚体形变可分为平移(Translation)、旋转(Rotation)和镜像(Reflection)三种,这三种变化可以用群作用,或者矩阵来表示。由这三种作用组成的群叫做欧几里得群(Euclidean Group)记作 E(n),因为 E(n) 中的元素都可以用矩阵表示,所以 E(n) n+1 阶矩阵群的子群(具体解释见下图)。群 E(n) 中只由平移和旋转(不含镜像)构成的子群叫做特殊欧几里得群,记作 SE(n)。

MATLAB2.jpg

下面我们 MATLAB 中的逆运动学函数 inverseKinematics 来让机械臂动起来。我们只需要定义出机械臂所要经过的几个路径点的位置、速度以及加速度,MATLAB 即可通过对特殊欧几里得群求逆来计算出整个机械臂所经过的路径,以及每个时刻的速度以及加速度等信息。


% 关节起始旋转角及初始位置
positions = [2*pi, 0.2619, pi, 4.0142, 2*pi, 0.9598, pi/2];
config = homeConfiguration(robot);
for k = 1:length(positions)
  config(k).JointPosition = positions(k);
end

% 定义机械臂需要通过的路径点以及对应速度、加速度信息
waypoints = [0.5639 0.0013 0.4336]  + [-0.1 0.2 0.4 ; -0.2 0 0.1 ; -0.1 -0.2 0.4 ;] ;
waypointTimes = 0:4:8;
ts = 0.2;
trajTimes = 0:ts:waypointTimes(end);
waypointVels = 0.1 *[ 0  1  0; -1  0  0; 0 -1  0;] ;
waypointAccels = zeros(size(waypointVels));
waypointAccelTimes = diff(waypointTimes)/4;
[q,qd,qdd] = trapveltraj(waypoints,numel(trajTimes), ...
             AccelTime ,repmat(waypointAccelTimes,[3 1]), ...
             EndTime ,repmat(diff(waypointTimes),[3 1]));

% 画出初始状态
%% 画图--机械臂
show(gen3,config, Frames , off , PreservePlot ,false);
hold on
%% 画图--路径初始化
hTraj = plot3(waypoints(1,1),waypoints(2,1),waypoints(3,1), b.- );
set(hTraj,  xdata , q(1,:),  ydata , q(2,:),  zdata , q(3,:));
%% 画图--路径点
plot3(waypoints(1,:),waypoints(2,:),waypoints(3,:), ro , LineWidth ,2);
set(gca,  Position , [-.2, -.2, 1.5, 1.5]);
xlim([-1 1]), ylim([-1 1]), zlim([0 1.2]);


MATLAB3.jpg

% 初始化机械臂的逆运动学方程
ik = inverseKinematics( RigidBodyTree ,robot);
ikWeights = [1 1 1 1 1 1];
ikInitGuess = robot.homeConfiguration; % 随机设置一个初始状态

% 让机器人动起来!
for idx = 1:numel(trajTimes)
    % 解逆运动学方程
    tgtPose = trvec2tform(q(:,idx) );
    [config,info] = ik( EndEffector_Link , tgtPose,ikWeights,ikInitGuess);
    ikInitGuess = config; % 以上一时刻的状态作为下一时刻的初始值

    % 画出机器人的动态
    show(robot,config,  Frames , off , PreservePlot ,false);
    title([  Trajectory at t =   num2str(trajTimes(idx))])
    drawnow   
end


最后得到的轨迹图如下:

640.gif

有兴趣的读者可以修改上面代码中的参数(例如路径点的位置、机械臂的速度加速度等),来看看结果会出现怎样的变化。


西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

 楼主| 发表于 2020-8-2 17:53 | 显示全部楼层 来自: 中国山东济南
更高级的智能

在实际使用中,除了要让机器人会动外,还需要赋予它们自主性。在本节中,我们希望机器人拥有路径规划以及障碍躲避的能力,让我们来一起见证什么是更高级的智能。

我们以即时定位与地图构建算法(Simultaneous localization and mapping,SLAM)作为例子。该算法可以通过著名的卡曼滤波(Kalman Filter)来得以实现。在如雷达、声呐、天气预报、火箭发射、计算机视觉、控制理论等诸多工程应用中,都离不开卡曼滤波的身影。

从抽象角度看来,卡曼滤波无非就是传感器不断根据外部环境,调控机器状态的一种装置。记机器状态 x (位置、速度等),传感器测量的外部环境变量为 z(温度、气压等),可调控的变量为 u (电磁波发射频率、前进方向等),v 和 w 分别表示机器和传感器误差,那么卡曼滤波可以表达为一个数学模型:

MATLAB4.jpg

k 表示离散的时刻。如果 f 和 h 都是线性矩阵,那直接让上面两式对 x, z 分别求偏导数,然后再更新 x 和 z 的值即可(F_a, H_a 分别表示 f 和 h 对变量 a 的偏导数向量):

MATLAB5.jpg

如果 f 和 h 并非线性,由于误差项的累计,直接简单粗暴地线性化势必会带来更大的误差。为此,人们采用预测-更新(Predict-Update)两阶段算法来解决非线性的卡曼滤波问题 —— 在预测阶段,我们不仅要预测机器的状态 x,还要预测卡曼滤波的矩阵 P。这种算法叫扩展卡曼滤波(Extended Kalman Filter,EKF),是 SLAM 的灵魂所在。

MATLAB1.jpg

P<k> 是卡曼滤波在时刻 k 的协方差矩阵,该矩阵在更新变量 x 时会起到作用

推导过程令人头秃?那我们来看一看代码及实现过程吧!


% 初始化机器人及起始点、终点
% 我们的目的是希望机器人能顺利躲过障碍物并到达终点
map = LandmarkMap(20, 10); % 10*10 地图,20 个障碍物
V = diag([0.005, 0.5*pi/180].^2); % 机器(每个步长)的误差矩阵
robot = Bicycle( covar , V); % 初始化机器人
robot.add_driver( RandomPath(10)); % 定义终点
% 定义传感器
% angle:传感器扫射角度范围
% range:传感器扫射距离
W = diag([0.1, 1*pi/180].^2); % 传感器(每个步长)的误差矩阵
sensor = RangeBearingSensor(robot, map,  covar , W, ...
    animate ,  angle , [-pi/2 pi/2],  range , 5);

% 初始化 EKF, 并运行 150 个步长
P0 = diag([0.005, 0.005, 0.001].^2); % 卡曼滤波初始时刻的协方差矩阵
ekf = EKF(robot, V, P0, sensor, W, []);
ekf.run(150);



640.gif

上图中蓝色三角形表示机器人,红色菱形表示目标,粉红色扇形表示传感器扫查范围
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

该用户从未签到

 楼主| 发表于 2020-8-2 17:54 | 显示全部楼层 来自: 中国山东济南
造机器人?就是如此简单!

读到这里,相信大家对 MATLAB 的机器人工具包已经有了充足的认识。身边无人陪伴倍感孤独?—— MATLAB 帮你打造属于你自己的机器人!

机器人行业快速发展的同时,要面临各种各样的机遇和挑战。MATLAB 的机器人工具包也一样,仍需不断的革新和研发,在以下方面得以改善:
工具包没有覆盖机器视觉方面的内容,因此机器人的传感器只能处理非图像环境信息。要想给机器人加一双眼睛,需要下载计算机视觉工具箱(Computer Vision Toolbox)或图像处理工具箱(Image Processing Toolbox);
工具包无法利用大数据,这在高度信息化的今天,对机器人的成长是不利的。要想让机器人拥有大数据处理技能,需要统计及机器学习工具箱(Statistics and Machine Learning Toolbox)或深度学习工具箱(Deep Learning Toolbox)。

小时候在看《终结者》、《黑客帝国》等科幻电影时,总认为像“机器人三定律”这样的元素离真实世界还很遥远。

然而随着计算机视觉、机器学习、深度学习等人工智能相关领域的迅速发展,这些科幻电影里的元素会离现实越来越近。
西莫电机论坛微信公众平台正式上线!★详情请点击★ 西莫电机论坛会员交流专用群欢迎您西莫电机论坛加群请注明论坛用户名及所从事专业,否则不予通过
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

西莫电机论坛微信公众平台欢迎您的关注!

QQ|Archiver|手机版|小黑屋|西莫电机圈 ( 浙ICP备10025899号-3|浙公网安备:33028202000436号 )

GMT+8, 2024-12-23 02:01 , Processed in 0.064582 second(s), 27 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表