新普锐斯:电机的单脉冲驱动区增大
电机的单脉冲驱动区域增大对于电机,第三代普锐斯通过考察线圈的缠绕方式和压缩成形技术,把线圈端部(线圈中定子横向突出的部分)的单线长度缩短了20%。把磁钢片的厚度从第二代的0.35mm缩小到0.3mm,降低了涡流造成的铁损。通过这一改进,电机的重量减轻了35%,体积缩小了40%,总长度缩短了30%。
使用逆变器控制电机时,低速区使用过调制PWM(PulseWidthModulation)开关方式,高速区使用单脉冲开关方式,两者的中间区域使用过调制PWM开关方式。使用单脉冲开关时,当输入矩形波后,电机线圈的电感会延缓电流的上升沿,得到近似于正弦波的波形。过调制PWM开关则介于PWM与单脉冲开关之间,可以利用3个矩形波形成正弦波。
单脉冲的开关次数较少,因此损失较小。但无法得到PWM水平的扭矩响应,所以难以实现精密控制。PWM则与之相反,虽然损失较大,但响应速度较快。
第三代普锐斯的电机大幅扩大了单脉冲开关的区域3)。通过在发动机起动时切换为PWM,并事先把工作电压提高至最高的650V,抑制了起动时的第一次爆震。
而对于发电机,线圈的缠绕方式从过去的分布缠绕改为了集中缠绕。因此,线圈端缩短了30%,减少了铜损。集中缠绕可以缩短线圈端,而且生产性好,是现代电机经常采用的“首选”方式,但齿槽效应方面存在难点。因此,第三代普锐斯采用了发电机方为集中缠绕,电机方则为分布缠绕的做法。
停用两种昂贵材料
掌管混合动力系统的PCU(功率控制单元)由于大功率所以采用了水冷方式。第二代中各自独立的电机及发电机用IPM(IntelligentPowerModule)和升压用IPM在第三代中合二为一。部件数量和螺栓数量分别减少了23%和34%。组装的自动化率也从0%提高到了82%。
对小型化、低价格化的实现起作用的是散热方式的改变。与第二代相比,第三代降低了热阻,把散热机构的体积缩小到了第二代的1/3。散热器为丰田自动织机在昭和电工的协助下开发出来的。
第二代的散热方式是在功率器件下方依次铺设陶瓷制绝缘底板、铜块,涂抹一层润滑油后,再铺设由Al铸件制成的散热板。
由于铜块对绝缘底板存在热应力,会导致底板热疲劳,为避免这一现象就需要降低线膨胀系数,过去一般使用铜钼合金。但钼的价格昂贵且重量较大。
第三代去除了铜块。散热板也从铸件换成了Al波纹板。因为波纹板可以伸缩,所以热应力的问题大致得到了解决。
而且,绝缘底板与散热板之间还焊接有Al冲孔金属板,来吸收热应变。冲孔金属板上的小孔可以通过变形吸收热变形。虽然小孔的存在缩小了导热截面积,但是,由于热传导的整体速度取决于热阻最大的接触电阻,因此可以确认,小孔对于整体的影响并不大。
把来自电池的201.6V电压提高到650V时所使用的升压电抗器的铁芯,在第二代时为0.1mm厚磁钢片层叠而成。磁钢片中加入了6.5%的Si(硅)。其含量正好可以防止磁致伸缩噪声的产生。
此类磁钢片价格不菲。Si即便是放到电炉中也无法良好分散。只能在制成钢板后从表面向内渗透。处理时间较长,所以价格昂贵。
之后的工艺也非常复杂。钢板需要经过起模、加热、层叠、添加粘合剂、清洗表面、硬化粘合剂等多道工序。因此,铁芯在电抗器总成本中所占的比例相当高。
第三代的铁芯采用了高密度压粉磁芯(HDMC:HighDensityMagneticComposite)。HDMC由覆盖绝缘层的铁颗粒高密度压缩而成。只需压缩和热处理两道工序,无需后加工,因此价格得以降低。
但HDMC的问题在于振动。因为铁颗粒无法避免磁致伸缩,所以HDMC铁芯的振动较大。因此,第三代把方针从“清源”转向了“善后”。利用硅树脂在容器内浮起铁芯,阻断了振动的传递。结果,振动加速度缩小到了第二代普锐斯的1/3。电抗器也为丰田自动织机制造。由丰田自动织机新投建的安城工厂生产,向丰田的广濑工厂供货。 日本人做的东西很精致。。。国内的工艺要加油。。。
页:
[1]