辟尘 发表于 2011-11-13 13:49

电机铜损与铁损大致相同时,电机效率最高?

多个场合下看到这句话,谁可解释一下?或者有理论方面的证明?
谢谢!

giuseppe 发表于 2011-11-15 04:48

这个证明不难, 前提是只考虑铜损铁损没有其他损耗, 且铜损只和电流平方成比例, 铁损只和转速成比例, (当然实际情况不是这样,估算而已),总损耗求最小就能得到满足的条件是铜损铁损相等.

1-1-1 发表于 2011-11-15 08:25

我看到的好像不是这样,应该是不变损耗和可变损耗相等时,电机效率最高

ヤ湫仟eleven 发表于 2013-5-23 16:59

同意三楼的看法

hhzai 发表于 2013-5-24 15:51

1-1-1 发表于 2011-11-15 08:25
我看到的好像不是这样,应该是不变损耗和可变损耗相等时,电机效率最高

我觉得您说的更准确一点, 在汤老师的书上也看到过这句话

StevenZhou 发表于 2015-11-9 21:53

这个问题貌似很有讨论的价值啊,有没有结论?

lvwei1020 发表于 2015-11-10 11:42

1-1-1 发表于 2011-11-15 08:25
我看到的好像不是这样,应该是不变损耗和可变损耗相等时,电机效率最高

个人认为,电机工作的时候损耗都是变化的,铜损随着负载的增大而增大,铁损也是随着转速(频率)及磁密变化而变化,其他风阻、杂散损耗都是随工作状态变化而变化。电机里实际上来说应该是没有不变损耗的。剔除其他损耗因素的影响,个人认为铜铁损相同的时候电机效率最大是可以成立的。而且实际测试中最大效率时铜铁损耗值也是比较接近的。所以这个结论还是有一定的意义。

DJ1510 发表于 2015-11-25 21:12

学习下,感谢分享

相由心生 发表于 2015-12-2 00:34

明显不是嘛 随便跑个rm看他最高点铜铁耗

254339861 发表于 2015-12-3 11:54

可以这推论............................

254339861 发表于 2015-12-3 11:56

.................................

kanlau 发表于 2015-12-6 17:28

学习了,很好的东西

zengxiaodong 发表于 2015-12-6 19:45

254339861 发表于 2015-12-3 11:56
.................................

你引用的内容是我贴出来的,找了好几次都没有找到原始帖子,请给出原帖链接,谢谢!

zengxiaodong 发表于 2015-12-6 19:58

254339861 发表于 2015-12-3 11:56
.................................

找到了,在这里:


https://bbs.simol.cn/thread-54653-11-1.html

《 西莫论坛研讨会第一期——电机参数对性能的影响》

1-1-1 发表于 2017-8-10 10:23

这个在苏联的电机学中有解释.

**2gm0en0Hmt56jYJv2Z/2vJOuwTnVdnfVc9Du6RsMw/JV5wzF8G27XeysreJq9fXF5P/s7+NZvF2Rc+rK9B3bky6du2/lUbV2+DXnWEzf5ebr3rQnnFZ/yrU+62jv/e8m4Nbegr7XZtm5xXXkDQ1s/ZK/uK9/aDMMvze3mGoZhAbeIchXEvn3R+9nOXF3ueq7vR2A9H5nzKNR0VW3GrnM/DMNx5g3HMBzg9gXnvXUtNc/tHn0TqU/v+dT+EVjPoz8IegW+UbqytlyLYRjOMf9LZRi+MGw6XvGL/zAMQ2U2HMMwDMMwXM58S2UYhmEYhsuZDccwDMMwDJczG44vTP3vkP5AIUfkGf9d0phg3NQNwzAMwxHmZzi+KPzvBP5Hgz8w+Iz/rcClwGbC/ynBEfESyRxz2QzDMAxnmDccX5DuDQMbgHslf+2z/7UQsS3qUzcMwzAMR5g3HF8Q3zScXTrfiuQbDDYV98YbhmEYhqPMG44vhm837tkc4OO3YNxsgLHYeDzr12QPwzAMQzJvOL4QvonIzcI9EKcu+7zlGIZhGK5k3nB8EfLnNh7ZbHRvMOatxjAMw3A1s+H4IvhzF4++gcgfEAXebKibtxvDV8c3dcMwvB6z4fgCPPvbHcRDeGtCzEfemAzDKzGb5mF4XWbD8UXgLcQzyLcZs9EYhmEYPor5odEXhzcRz1yiZ8cbhmEYhiPMG44Phm9j+C0Nv62x4l//+tdTNwdbuSrURv69GodhGIbhCLPh2OCKL7Z8G+PIJoLcz/o2iviDp0D8PX78+PHeGobH4Zqr112nO8I9Ps+AvB+9AXeO7h2zvtSd7SvpajX/FrW2rPkoZ+1X3JM7fe6poeassTx+VV7iWyo8Sf/+++/vZ2se/Z8aXshHfnbBmviif8UXXi+c1e/UoP/R37chjluIiW4rNvmZ5zNzdi/mYL5/++23t/YR6rhYK2I8s9bMcSZurU2eVRvrw1j37huuob3ryLUGr/sr1ttrnlz8V2zWeu86Zx7pcz5t4wP5WaBtxRyQ/RnzKDmGPRij61PrPLIukGMF4vF5lGuWkLM+qOjv/QEcbR+tZQ/XNGvOuFxb1LCXK6+JVayKawlpv4I+asnPG2IwJ+oyd9qiX9XhGAV/Y3TrlXUDvvqnL1Bb9m3N4ctym4RPhzIsxfaq**Ev7f+alslwWfVt8I8+j6brVquynkG8uccXEXOw9lx61vlWdwb23F08iyIleuyFX9v/dJvK849GK+KNWVtzlviefXt2spR9D/DGZ9uPGCdR+J0dvofQds9eQbGWcU8mst505bj3lylj7YZA2p/xf6j0tHpV7aSMY/K3ny8Ki/3LZVbTW9yhNuktwLsNBPjHonNDjt3j8Z8JtZRd7hAvqNzcBXOpbv+K/BpMZ8IQP0W/rKyXFfqfNa8ZW3E9Bo4Uptkbca5itU1uqoX/arvmXXmHCjU6tOr0GaO6jiwpw+9/uA5cdRvzbHXC2T7WdT7OMdDu/aDnzFdPdjXzzBwzbbiAjHpy/nMuXGunLdnQC7q8z4kv/VmnV57ymoMwBwQd+8zyJzYOjf5eVDnsuZ0DfAxxkokY9BmLPjTRsiJjvlV1621dYPj5NzaHYfXE3zJtxtwG8inc5tEZvaQYLsHdh1HfCurWHsc8evGc3SMvwKMtc6Tuo9cq45aG/VU3RbPrKWD+DlHtTbPU5dUX6n2nD/jeqxxu5grHb7613qyXXMkxkj/GksyZwpwTP8qQrvGgVVsRLq+lGrT0eXO866OZ1Bj5lxVtOlI/2qjzthSfdIv213Mat+xssl8VcTzWrOkzxFZxXl1XuJnONj53SbwL7vHei7oasnsIiF9atsjsrU7JBbx2Z2ys2RXWX+Gg3o78onFp4ZVrqxZG3X3LsmqrsQxPYMcW7eGHeT3e6F1vMxb7vBXc0eu2ufYVz4dNY7rhq5bi6Prk3PhfGyN5x6oxdiS+YC5dL3ze9XA9e11bZu6vd5dC+Llmp2luxdy3m1zhJyj1FUfqbWt7CRzgfOD0IasocK8Y1c/Eyquj7E4z8+VrNF1S136YW9tYs3pl5CH/rxW1eED5oUuxllYa9aCmoHYWafk2IAa897vyDnImMZyXsFc2e96AL51/bxOicERzANd/eK4cy0r6jhWf9cF0jd9sg01xpfhttifzm0SuSvez97ukJ9S2dOlX7Yh2yuqzRGfe7A2xg51Dl4V630GzkFS5+UoNY7zeY+kb9LpOvTvangWxhfjp072dF3/s6hjtk4x91btK59kz/9Z1FpW1Hr06+rZilfjiHE6X/X25bk6qOfJSr9F1lQl+x1P9nWs+mucJPXp38U5QsY4wsrWOKuat8TxIl+dl/kZjtukvrf+xHN2puwgPwJ3qHuwI8UWoU2NKzkKO9zberyf3Q9zZW1VnsFqZ018xmuuOg/Ks+pIiFuhTtbSed0TbTk++vTAUxIxiWN8n76ugrrNWdnL7dMVcD0/C9ba2LSNTZ1CbV4TtXb1ji0/B+xz7TNm4hroq1/SXT8d2FnLER/GTr4cB+PliH9XSwdxsE/JNUucY3Ik1Jw+W7mJ7/HMZ6/XmUdqUCD1eezI+qgjr0vHkdeLn8OCv3Mt6JCtMdFPnDp2fY/cHxnDdkfXZ715PXf39JflNrBP5zbJ763/7F6FtuJ5pdpL+kHnW6k2R3zuwdoce87Bo9TY4Lw+M8+jdHWqO8M9Pnt0MR/J4/w/C2I5b3VNa53dmtc5/wi6Oeh0slXXvTWnH+2t/Elnt+VnbOl87V/FMWfGEfu6uGA/dLqVP6hHutwrMmaVjiN95k/bbEsdD8es3b606aj96VP7Kkf6u5qy3c1h9n91XuYNh7vB24T/ZVd6q/HnTpX+DnfOj8Lu1TzK6knimax2wPeS8yfukru+z8b1W63vFvf4nMGnHI9cj3tQE2uaT0hcRzn32PhUVm2P4rzV6588mat7QrKfOvDnaE0V9BV0Z6/bOgegjnh1DtQrzhdtyD5kay7VZX7avgHZo6sdrAfpWPX5ubbyA9eVvI5NsZZa++rzijz20d56aiam8eu1tYXxc5703xpnxWuQONZJnIybbcjxbOXSr7NZ+eHDnCgr6HNNU1wzyPk0bne91vH9MtwG/OncJvdt93ZUKqlLm2pPni3S9mqsrdb4DIxZx3tFrkexppSOLf2W3yMQ0zlc5eiuKa/n9E07+6X2H0GfjHMGfat/V8eqtqO5V3lS19msODPuLdujObfs7Mv+1KV0bPVB+qddPa/szZH9K5u9+B3aZ+yz86/ujI9kn+0qsKoJXdae0oFtJX3s73TJqp5E/6/OS4xgtcgrqaQubap9Pa9s9T0ba7kiZxc35/jVsK5VbVu17/k+yl78VV/61f76AUMb3Rky9p5k7L3roPps2R6hjlVWuiP5VjEr2OTYM77+OR/qEvUZp6P6n/FJvyRrq6Rvl0ffFUdin8U6VrFTr+gDnU6f6ttR+9I+Y0LVGV/SdyVdTCXZqz37K+i2+r8aLzECJrQu3orOzkWBjGUb0ca+ijYfhRfQ77///q55Do4jx6uO4x9//PFu+XWg5tVc5RivYis2NVHbWYiJL0f8z64Lfkd9qt2WL3r6q1SsfY+0ydgd9u+BzT1zDt4HlazLOrTt7CvVZs+Hfq+dXIujubHDRqmor/7GXPV3urNk/Er2Zb9zUXPnfChH6sNG6SBOzjv5KxnD+roatNmixknQG7eSfV2NX4358/QB32/b+t7mM/F7ercL6qk5GQMxZ1mHK/nIe+Uz4P6ce+h1mM+1X4PZcHwS/uDXsz+0+YGr2859bsxhGIbhpZgNxy+Gb06OLKtPcT49wFwOwzAMwxW83B9vG+6HjQPsbRqw8w2L0M7zhP+2hT1ijmwPwzAMwx6z4fgFcDPghqFuDip+Gwd77ADd6ts79Vs06TMMwzAMR5gNxy8Am4FOtjYEbDZ+f/9lOmwous2Jv5CGOPbjA6u3IcO1dL8kaBiG4SswP8PxTfGNCJsJ31jkpVB1eW5b/2EYhmHYY95wfFN8w2E7Nxv1bYbUtxq1fxiGYbiWr/yzc/OGYxiGYRiGy5k3HMMwDMMwXM5sOIZhGIZhuJzZcAzDMAzDcDmz4RiGYRiG4XJmwzEMwzAMw+XMhmP40vCLsB75b2Jf7RdpPTreYXh1unvy7H3KPfLoffLVPhu+BPy32OF7wvJ3l4D6//mf/3nX9NC/ZbeK/0zMcW+e9D06nuy3bZ+yhzba7+UW7RHJNtRzqD6gbi/nFXQ1vjKuz9H5eua8mveZOJ6zPKsOx1TnSH3mqedHWMU5SvraPuM/9LzUGw5+g6W/xTJZ6Ss+/VWpO9WtvkfgT8Nbq4JOzInedsX+6tvR+Z+BX2kO5HoEfgGYdVuz83r7QHk7VnKcibojY9OGHAg59e/W1ZwcFaHtfPir3o0lt/vlLY926Z+/RG01ZsDH2nJ9/Y2tzmXG7qCWHKM++mXdYO2OP7F2+rprLue1E+JVneCbtWXutIPaL8aktoxTRbs6L4Cv/WmrXrsj1N+ua/6E+eY6yZxVsqYO5x1Yu+qfsRP1SremUn3F+NlvG33OcYLNaq5TJ95L4r2zdQ/tYXxiOG/OAfk7rA07/b0XxVjdOIaD3G6Ml4Fybov6fvYfjpaJL7ZVMqY6yfYjGBfJOvZy1/GmLm0rNdYjZA1Zu6irdHpjrXxk1Y9uy0/0Nx/s5ezIfPf4Q8bYAztr1k9dnqurditJOp3kGNNuy2fFGZ+aZ0+SLZ1ztML+HPeqLerOyrOxDo5nSJ+Vv7FXdP3qtvwqe3V01PjV1zpW8dKfdspRsM346W/76HiG//ASbzjcMQo7R3fQ6G8L+9ZGv7erxPY2rr+ITyT6okuesVMlL7t183FE59PjKrdjOwpx2IWb716Y19zNc7TtHHLuulhnPrGa3zjq8OGIj3kS+81hP20wlzHr0xQ6bUA7dIjnSIdPjvYby3UzH/220yf7Ef3tVxL9hTa5FHM7p8S0rY15gLYCq7wVrseMA15PyJ6/OAdHoX5im5tz4NzxpTyTnPeEepzjHI9zpIjn3tNpg4jrcHQuq52+3iMcGcNqHHtrkWPs6srPASCP48mcxqEPe/rqvS3257yA+loD5/YBxxpfG2OuYttOW2Au1a9wLmps8LqkD/E6GE5wm8RPhzKyFNq3Bf3Z7qRDnxX0V9+teI9Q4x7NzXmOPdF+b5xHMZ7U2Na8ymd/ZcsHar8xqi5F8pzjKk/1S+xLWemRhHNz1rZUH8AOvX22FftX4xHtk+58pTsila6mOh5ZxUh9HjPOauz2J3s+Yn/mSVG/hXZy1OesQNYp2a5oW+2tN/v3RGjrn+Ou9kolx5B1ZMyVb9V3Np2/Otsrql9i31HZyjP0vMzPcNxqeW/9CbtHd5r0KZ536IO4Q97azQLxJJ8AzkjFJ45VndL1Uw9CXGuj7VMoPvV7yPfiE5TYdlzWssrnE099QkrQd09gGdNxGg+oxXrsB+dA9LFm6+BaSLuKcTziZ9snF9o1BjZeZ0B+25m/gk9Xuzlsb62tT2/E8dpe5auYZ0uA2Al5zJeSdqkX26y99uaooKefOcgYlZxnca26uejsgVxVOn+wHvOAba9r/Oo17piqZJzaRxzfdCE5d9ancM9ZW/pLziV91mNs6/Ac2YJY+FR7YlasB9m6njtfsDbrd8ycI/pV/6wJO33Sf0WuH/5VmE+OQB7aW2MbFtwm79OhDEu5LeTPcwWdZLtS+6q/sZPU2T4rlU7f5YZOJ1lPth/FOAqxk5W+kna2O1nFR/K8G6P6jr2+Sq0Tahu02wMb82cdR32r7JF2HM2pvspZ8Mlx7HEkj3NpbNupS9BVqk9KjZmk/oxIV++WyEoPdT622LIzTkf6ZFsfdVv+e6KdsSHjK/Z7nu3UCecZZ4V2HVu+qz719uU5kuMY7udl3nDcFvRtF8pOEnziQ2jTt0fdcep/lHy6OCMdK/1RnAvmhVgcEcjva96DsZzrfOpynu1fzTt6/eq8Af7W3WENxseWONqv8lassUqH85njBWuuZByegIyd8+8crsbZQQzHL3UcFZ7Ocj5pOw6OxktJMvZKznDUPq8N66U2dbQZm0+f6Fboox/k2Ksv56552iigf9UDeqlxAF991HGdaON4E/vwISbjrm9HmFv0xtxiax2cU6mfj1s4LzlGr3WoNYO2jtH6rZF+2tmvTX3D4FFfjsre55/znj6KsRPmKceLHXDe2Q8PcLtAPp3bor63+p176tL2KPrsxX4GxOrirfIctc3zzudealznSjodqOd4RJJ6vpUz25W9vprH8/RJu+xPfaWrLW1XfpKxsw31HDjv8kiOB7oYR8g8e2D3SB454t/lSZ3trvasM+2qLgU4rsaovsuXaCc1ZkqS57S7PBmnkj57/h3pU33p028Vu6LPlq192m4Jth470q5iX+J59tlWsr6K9aTd0PMSbzjc6a/wKQncvXawM61x0OnT+ZLb2I/S7for7p6hPsVk/VnT1twk+PvzFPjs1eOTAvYItdSnIHR13rDN+minAD74KhXrRPLJCYhx5GnM2M4PMWl3cwied/mg1tnVbb0cO9DvXaPErbUlXd3OR43NWK1H6cj+lXwE5HHNkK15AK/hvfkiJnNTx8Hc0OdaZhzazmder9aY1+CRe7vidZbXJJiH/N24qq5er1tYJz6ZE+hzfvZi0u88JKuat6gxOrLeOjd781VxTfFhDEhdgyRjZq15TRgTahxtFOd4aLhN9qeTZdDeKuu2oO+tv0Of/rYr9qc8i8zfkTmr3apeyb7OrvrTRreCfu27eEfYmuNVbn3sp72VfyuWvtV/pZetPrDGtEldtlMntT+pOs+7nB3VRl/ZiqN+SzJWxdhw1EfSHqk6yPiSNp2Yu9OBMZVOh6RPYn+if/qkjT72e64uz1MqXR7JOMlRn85X0n9ls5WnYq4921WuivFW2F9tVnrZ6oNVf45rL8Z35yVmZm+BXMQji3nGZs/uLN6ER/JXjtyMSmdrblnZQY2jb0qnr9Scgm6VGzqfxHxKF2urD474VtSniGNNXdqtpJL6Vcwtaj/nOcYu5lFqrErGTlnR2SJJ149IbR+Rbj48pi4lfZJqtyfpk6TNSjrQd+PZ8ut0yZYvbPmnL7Kat+SM7YrMqSRH5gW2+vf09/YP/+Gf/HObpJfH11S82vrtt9/e2t8N52D17Qb6bzfeW5vj1rclsO36ee3q61bmOl+9VvuuHv0fXafVWNXvxd+qYxVb9vr3OFsjHM1F7Hvr2oPYj67bvThnkONjjj6jHvH1ef2YfGSuXMO9sdFPjnovf+Y6iev1Uddt3iscf/z48dYW+4/kWNlujSnz137XCbD5zHV5db7MhmMYhmEYhq/LS/3xtmEYhmEYfk1mwzEMwzAMw+XMhuMdvn/H9+KGYRiGYXg+8zMcwzAMwzBczrzhGIZhGIbhcmbDMQzDMAzD5cyGYxiGYRiGy5kNxzAMwzAMlzMbjmEYhmEYLmc2HMMwDMMwXM5sOIZhGIZhuJh//OP/D2Tt/0j6TL4zAAAAAElFTkSuQmCC

jjluhonglin 发表于 2017-8-18 17:33

xuexi yi xai ao   刚刚来学习一下{:1_521:}

hoyt777 发表于 2018-2-1 12:42

学习下,慢慢积累吧

Sean2028 发表于 2022-9-10 10:41

做电机很清楚实际做不到理论,理论对电机只是指导方向不要太认真装入死角。
页: [1]
查看完整版本: 电机铜损与铁损大致相同时,电机效率最高?