6万的无刷直流电机案例~请高手帮忙指正!
6万的无刷直流电机案例~看看有哪些问题?请高手帮忙指正! 帮忙看看哈,新手刚刚接触,希望得到更多的指点? 楼主,这个方案,我大概看了看。轭部尺寸太小了。轭部磁密都2.2T了,太高了!齿部才0.3T,太低了!我感觉不行。
Stator-Teeth Flux Density (Tesla): 0.302478
Stator-Yoke Flux Density (Tesla): 2.2059
另外:6万是何意? 是6万转的意思,那请问怎么来降低轭部磁密,提高齿部磁密呢?指点一下~!谢谢 还有轭部磁密,齿部磁密应该在什么范围内才算合适? 回复 3# hxmotor
是6万转的意思,那请问怎么来降低轭部磁密,提高齿部磁密呢?指点一下~!谢谢 降低定子槽型高度,增加定子槽型的宽度。
我没有搞过BLDC的实际设计,磁密情况掌握不好,但至少不应相差这多。你可以参考你那里现有成熟产品的参数。
另外,60000rpm的电机,是否需要在转子外圆套非磁性保护套? 回复 8# WEZDAH
呵呵,学习了! 回复 7# hxmotor
嗯,加一层 非金属的保护套啊。我觉得这个效率有点低,有没有办法让太提高。还有这电机还有没有那里需要修改。求指教!! 本帖最后由 cxj 于 2011-9-22 14:14 编辑
回复 8# WEZDAH
永磁体和护套采用过盈配合,6万应该没问题! 回复 8# WEZDAH
永磁体和护套采用过盈配合 我现在把槽型改了一下,轭部磁密1.4T,齿部磁密2.6T,效率到了83%。还需要看那些参数啊。我觉得效率太低了,有没有办法提高。Iron-Core Loss (W): 159.641
Armature Copper Loss (W): 39.5953这个损耗合理吗? 建议将方案贴出来,而不要做成附件!若需要别人帮您看,还需要花西莫币看附件,这样会对你回复量有影响的 我也没做过高速电机,但是觉得你的这个磁密对于高速电机来说还是有点高的。轭部磁密还差不多,但是您的这个齿部磁密有点高呀,这样的话损耗也是很大的,关于这个效率的问题是高速电机的效率应该都不是很高的,还有一个就是应该调节一下这两种损耗,最好让这两种损耗都差不多的情况下应该是比较合理的,就是铜耗与铁耗基本上差不多的。个人意见! 本帖最后由 cxj 于 2011-9-22 18:23 编辑
回复 14# y1949b
无刷直流电机设计
BRUSHLESS PERMANENT MAGNET DC MOTOR DESIGN
File: Setup1.res
GENERAL DATA
Rated Output Power (kW): 1.3
Rated Voltage (V): 200
Number of Poles: 2
Given Rated Speed (rpm): 60000
Frictional Loss (W): 6
Windage Loss (W): 8
Rotor Position: Inner
Type of Load: Constant Power
Type of Circuit: Y3
Lead Angle of Trigger in Elec. Degrees: 0
Trigger Pulse Width in Elec. Degrees: 120
One-Transistor Voltage Drop (V): 2
One-Diode Voltage Drop (V): 2
Operating Temperature (C): 90
Maximum Current for CCC (A): 0
Minimum Current for CCC (A): 0
STATOR DATA
Number of Stator Slots: 6
Outer Diameter of Stator (mm): 48
Inner Diameter of Stator (mm): 31
Type of Stator Slot: 4
Dimension of Stator Slot
hs0 (mm): 0.5
hs1 (mm): 0.5
hs2 (mm): 1
bs0 (mm): 1.8
bs1 (mm): 14.4036
bs2 (mm): 15.5583
rs (mm): 2.6
Top Tooth Width (mm): 4
Bottom Tooth Width (mm): 4
Skew Width (Number of Slots) 0
Length of Stator Core (mm): 45
Stacking Factor of Stator Core: 0.95
Type of Steel: DW540_50
Slot Insulation Thickness (mm): 0.3
Layer Insulation Thickness (mm): 0.3
End Length Adjustment (mm): 0
Number of Parallel Branches: 1
Number of Conductors per Slot: 50
Type of Coils: 21
Average Coil Pitch: 1
Number of Wires per Conductor: 2
Wire Diameter (mm): 0.42
Wire Wrap Thickness (mm): 0.06
Net Slot Area (mm^2): 33.4166
Limited Slot Fill Factor (%): 75
Stator Slot Fill Factor (%): 68.9477
Coil Half-Turn Length (mm): 66.9378
ROTOR DATA
Minimum Air Gap (mm): 3
Inner Diameter (mm): 8
Length of Rotor (mm): 45
Stacking Factor of Iron Core: 1
Type of Steel: DW540_50
Polar Arc Radius (mm): 12.5
Mechanical Pole Embrace: 1
Electrical Pole Embrace: 0.904849
Max. Thickness of Magnet (mm): 2
Width of Magnet (mm): 36.1283
Type of Magnet: NdFe35
Type of Rotor: 1
Magnetic Shaft: No
PERMANENT MAGNET DATA
Residual Flux Density (Tesla): 1.23
Coercive Force (kA/m): 890
Maximum Energy Density (kJ/m^3): 273.675
Relative Recoil Permeability: 1.09981
Demagnetized Flux Density (Tesla): 0.000150146
Recoil Residual Flux Density (Tesla): 1.23
Recoil Coercive Force (kA/m): 890
MATERIAL CONSUMPTION
Armature Copper Density (kg/m^3): 8900
Permanent Magnet Density (kg/m^3): 7400
Armature Core Steel Density (kg/m^3): 7750
Rotor Core Steel Density (kg/m^3): 7750
Armature Copper Weight (kg): 0.0495223
Permanent Magnet Weight (kg): 0.0481229
Armature Core Steel Weight (kg): 0.229148
Rotor Core Steel Weight (kg): 0.103263
Total Net Weight (kg): 0.430056
Armature Core Steel Consumption (kg): 0.861744
Rotor Core Steel Consumption (kg): 0.103263
STEADY STATE PARAMETERS
Stator Winding Factor: 0.5
D-Axis Reactive Inductance Lad (H): 0.000189814
Q-Axis Reactive Inductance Laq (H): 0.000189814
D-Axis Inductance L1+Lad(H): 0.000269886
Q-Axis Inductance L1+Laq(H): 0.000269886
Armature Leakage Inductance L1 (H): 8.00729e-005
Zero-Sequence Inductance L0 (H): 0.000237457
Armature Phase Resistance R1 (ohm): 0.549584
D-Axis Time Constant (s): 0.000345377
Q-Axis Time Constant (s): 0.000345377
Ideal Back-EMF Constant KE (Vs/rad): 0.0278872
Start Torque Constant KT (Nm/A): 0.0152223
Rated Torque Constant KT (Nm/A): 0.0260012
NO-LOAD MAGNETIC DATA
Stator-Teeth Flux Density (Tesla): 1.77627
Stator-Yoke Flux Density (Tesla): 1.95799
Rotor-Yoke Flux Density (Tesla): 1.36406
Air-Gap Flux Density (Tesla): 0.35511
Magnet Flux Density (Tesla): 0.490829
Stator-Teeth By-Pass Factor: 0.0187278
Stator-Yoke By-Pass Factor: 0.0020791
Rotor-Yoke By-Pass Factor: 1.11516e-007
Stator-Teeth Ampere Turns (A.T): 15.6777
Stator-Yoke Ampere Turns (A.T): 91.7209
Rotor-Yoke Ampere Turns (A.T): 1.6448
Air-Gap Ampere Turns (A.T): 960.388
Magnet Ampere Turns (A.T): -1069.69
Armature Reactive Ampere Turns
at Start Operation (A.T): 2605.07
Leakage-Flux Factor: 1
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.105533
Correction Factor for Magnetic
Circuit Length of Rotor Yoke: 0.378583
No-Load Speed (rpm): 67636.8
Cogging Torque (N.m): 0.0126025
FULL-LOAD DATA
Average Input Current (A): 8.10626
Root-Mean-Square Armature Current (A): 6.18486
Armature Thermal Load (A^2/mm^3): 425.257
Specific Electric Loading (A/mm): 19.052
Armature Current Density (A/mm^2): 22.3209
Frictional and Windage Loss (W): 13.7715
Iron-Core Loss (W): 213.807
Armature Copper Loss (W): 63.0689
Transistor Loss (W): 29.1838
Diode Loss (W): 1.01722
Total Loss (W): 320.848
Output Power (W): 1300.4
Input Power (W): 1621.25
Efficiency (%): 80.2098
Rated Speed (rpm): 59540.3
Rated Torque (N.m): 0.208564
Locked-Rotor Torque (N.m): 2.70919
Locked-Rotor Current (A): 178.037
WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 6 slots as below:
AZBXCY
Angle per slot (elec. degrees): 60
Phase-A axis (elec. degrees): 30
First slot center (elec. degrees): 0
TRANSIENT FEA INPUT DATA
For Armature Winding:
Number of Turns: 50
Parallel Branches: 1
Terminal Resistance (ohm): 0.549584
End Leakage Inductance (H): 9.44348e-006
2D Equivalent Value:
Equivalent Model Depth (mm): 45
Equivalent Stator Stacking Factor: 0.95
Equivalent Rotor Stacking Factor: 1
Equivalent Br (Tesla): 1.23
Equivalent Hc (kA/m): 890
Estimated Rotor Moment of Inertia (kg m^2): 1.34607e-005
这个是我改做之后的 ,你看看 还有什么问题? 这个是我改过之后的 楼主,想要提高效率。我感觉这个方案磁密还是过高:
Stator-Teeth Flux Density (Tesla): 1.77627
Stator-Yoke Flux Density (Tesla): 1.95799,造成铁耗占得比例较大:Iron-Core Loss (W): 213.807。同时感觉槽满率较低:Stator Slot Fill Factor (%): 68.9477,不知是否为自动下线?
建议降低磁密看看。减小定子槽型(自动下线就算了)或加大铁芯尺寸的方法。 回复 18# hxmotor
采用人工下线,槽满率应该差不多了,采用集中双层绕组,槽满率一般不大于70%。否则下线困难。轴向长度长了,临界速度会下降,我试了改槽数,但是没达到效果,我理论知识欠缺,希望通过过讨论能够更深刻的理解电机的设计! 不要选那么高的磁密
页:
[1]