cxj 发表于 2011-9-22 10:12

6万的无刷直流电机案例~请高手帮忙指正!

6万的无刷直流电机案例~看看有哪些问题?请高手帮忙指正!

cxj 发表于 2011-9-22 10:13

帮忙看看哈,新手刚刚接触,希望得到更多的指点?

hxmotor 发表于 2011-9-22 11:30

楼主,这个方案,我大概看了看。轭部尺寸太小了。轭部磁密都2.2T了,太高了!齿部才0.3T,太低了!
我感觉不行。
   Stator-Teeth Flux Density (Tesla):        0.302478
   Stator-Yoke Flux Density (Tesla):                2.2059

另外:6万是何意?

cxj 发表于 2011-9-22 12:20

是6万转的意思,那请问怎么来降低轭部磁密,提高齿部磁密呢?指点一下~!谢谢

cxj 发表于 2011-9-22 12:20

还有轭部磁密,齿部磁密应该在什么范围内才算合适?

cxj 发表于 2011-9-22 12:24

回复 3# hxmotor

是6万转的意思,那请问怎么来降低轭部磁密,提高齿部磁密呢?指点一下~!谢谢

hxmotor 发表于 2011-9-22 12:35

降低定子槽型高度,增加定子槽型的宽度。
    我没有搞过BLDC的实际设计,磁密情况掌握不好,但至少不应相差这多。你可以参考你那里现有成熟产品的参数。
    另外,60000rpm的电机,是否需要在转子外圆套非磁性保护套?

hxmotor 发表于 2011-9-22 12:45

回复 8# WEZDAH


    呵呵,学习了!

cxj 发表于 2011-9-22 14:10

回复 7# hxmotor


    嗯,加一层 非金属的保护套啊。我觉得这个效率有点低,有没有办法让太提高。还有这电机还有没有那里需要修改。求指教!!

cxj 发表于 2011-9-22 14:12

本帖最后由 cxj 于 2011-9-22 14:14 编辑

回复 8# WEZDAH


    永磁体和护套采用过盈配合,6万应该没问题!

cxj 发表于 2011-9-22 14:13

回复 8# WEZDAH


    永磁体和护套采用过盈配合

cxj 发表于 2011-9-22 16:24

我现在把槽型改了一下,轭部磁密1.4T,齿部磁密2.6T,效率到了83%。还需要看那些参数啊。我觉得效率太低了,有没有办法提高。Iron-Core Loss (W):        159.641
Armature Copper Loss (W):        39.5953这个损耗合理吗?

y1949b 发表于 2011-9-22 16:34

建议将方案贴出来,而不要做成附件!若需要别人帮您看,还需要花西莫币看附件,这样会对你回复量有影响的

402909230 发表于 2011-9-22 16:39

我也没做过高速电机,但是觉得你的这个磁密对于高速电机来说还是有点高的。轭部磁密还差不多,但是您的这个齿部磁密有点高呀,这样的话损耗也是很大的,关于这个效率的问题是高速电机的效率应该都不是很高的,还有一个就是应该调节一下这两种损耗,最好让这两种损耗都差不多的情况下应该是比较合理的,就是铜耗与铁耗基本上差不多的。个人意见!

cxj 发表于 2011-9-22 18:19

本帖最后由 cxj 于 2011-9-22 18:23 编辑

回复 14# y1949b
无刷直流电机设计

BRUSHLESS PERMANENT MAGNET DC MOTOR DESIGN

                      File: Setup1.res


   GENERAL DATA

Rated Output Power (kW):        1.3
Rated Voltage (V):        200
Number of Poles:        2
Given Rated Speed (rpm):        60000
Frictional Loss (W):        6
Windage Loss (W):        8
Rotor Position:        Inner
Type of Load:        Constant Power
Type of Circuit:        Y3
Lead Angle of Trigger in Elec. Degrees:        0
Trigger Pulse Width in Elec. Degrees:        120
One-Transistor Voltage Drop (V):        2
One-Diode Voltage Drop (V):        2
Operating Temperature (C):        90
Maximum Current for CCC (A):        0
Minimum Current for CCC (A):        0


   STATOR DATA

Number of Stator Slots:        6
Outer Diameter of Stator (mm):        48
Inner Diameter of Stator (mm):        31

Type of Stator Slot:        4
Dimension of Stator Slot
            hs0 (mm):        0.5
            hs1 (mm):        0.5
            hs2 (mm):        1
            bs0 (mm):        1.8
            bs1 (mm):        14.4036
            bs2 (mm):        15.5583
            rs (mm):        2.6

Top Tooth Width (mm):        4
Bottom Tooth Width (mm):        4
Skew Width (Number of Slots)        0

Length of Stator Core (mm):        45
Stacking Factor of Stator Core:        0.95
Type of Steel:        DW540_50
Slot Insulation Thickness (mm):        0.3
Layer Insulation Thickness (mm):        0.3
End Length Adjustment (mm):        0
Number of Parallel Branches:        1
Number of Conductors per Slot:        50
Type of Coils:        21
Average Coil Pitch:        1
Number of Wires per Conductor:        2
Wire Diameter (mm):        0.42
Wire Wrap Thickness (mm):        0.06
Net Slot Area (mm^2):        33.4166
Limited Slot Fill Factor (%):        75
Stator Slot Fill Factor (%):        68.9477
Coil Half-Turn Length (mm):        66.9378


   ROTOR DATA

Minimum Air Gap (mm):        3
Inner Diameter (mm):        8
Length of Rotor (mm):        45
Stacking Factor of Iron Core:        1
Type of Steel:        DW540_50
Polar Arc Radius (mm):        12.5
Mechanical Pole Embrace:        1
Electrical Pole Embrace:        0.904849
Max. Thickness of Magnet (mm):        2
Width of Magnet (mm):        36.1283
Type of Magnet:        NdFe35
Type of Rotor:        1
Magnetic Shaft:        No


   PERMANENT MAGNET DATA

Residual Flux Density (Tesla):        1.23
Coercive Force (kA/m):        890
Maximum Energy Density (kJ/m^3):        273.675
Relative Recoil Permeability:        1.09981
Demagnetized Flux Density (Tesla):        0.000150146
Recoil Residual Flux Density (Tesla):        1.23
Recoil Coercive Force (kA/m):        890

   MATERIAL CONSUMPTION

Armature Copper Density (kg/m^3):        8900
Permanent Magnet Density (kg/m^3):        7400
Armature Core Steel Density (kg/m^3):        7750
Rotor Core Steel Density (kg/m^3):        7750

Armature Copper Weight (kg):        0.0495223
Permanent Magnet Weight (kg):        0.0481229
Armature Core Steel Weight (kg):        0.229148
Rotor Core Steel Weight (kg):        0.103263
Total Net Weight (kg):        0.430056

Armature Core Steel Consumption (kg):        0.861744
Rotor Core Steel Consumption (kg):        0.103263


   STEADY STATE PARAMETERS

Stator Winding Factor:        0.5
D-Axis Reactive Inductance Lad (H):        0.000189814
Q-Axis Reactive Inductance Laq (H):        0.000189814
D-Axis Inductance L1+Lad(H):        0.000269886
Q-Axis Inductance L1+Laq(H):        0.000269886
Armature Leakage Inductance L1 (H):        8.00729e-005
Zero-Sequence Inductance L0 (H):        0.000237457
Armature Phase Resistance R1 (ohm):        0.549584
D-Axis Time Constant (s):        0.000345377
Q-Axis Time Constant (s):        0.000345377

Ideal Back-EMF Constant KE (Vs/rad):        0.0278872
Start Torque Constant KT (Nm/A):        0.0152223
Rated Torque Constant KT (Nm/A):        0.0260012


   NO-LOAD MAGNETIC DATA

Stator-Teeth Flux Density (Tesla):        1.77627
Stator-Yoke Flux Density (Tesla):        1.95799
Rotor-Yoke Flux Density (Tesla):        1.36406
Air-Gap Flux Density (Tesla):        0.35511
Magnet Flux Density (Tesla):        0.490829

Stator-Teeth By-Pass Factor:        0.0187278
Stator-Yoke By-Pass Factor:        0.0020791
Rotor-Yoke By-Pass Factor:        1.11516e-007

Stator-Teeth Ampere Turns (A.T):        15.6777
Stator-Yoke Ampere Turns (A.T):        91.7209
Rotor-Yoke Ampere Turns (A.T):        1.6448
Air-Gap Ampere Turns (A.T):        960.388
Magnet Ampere Turns (A.T):        -1069.69

Armature Reactive Ampere Turns
at Start Operation (A.T):        2605.07
Leakage-Flux Factor:        1
Correction Factor for Magnetic
Circuit Length of Stator Yoke:        0.105533
Correction Factor for Magnetic
Circuit Length of Rotor Yoke:        0.378583

No-Load Speed (rpm):        67636.8
Cogging Torque (N.m):        0.0126025


   FULL-LOAD DATA

Average Input Current (A):        8.10626
Root-Mean-Square Armature Current (A):        6.18486
Armature Thermal Load (A^2/mm^3):        425.257
Specific Electric Loading (A/mm):        19.052
Armature Current Density (A/mm^2):        22.3209
Frictional and Windage Loss (W):        13.7715
Iron-Core Loss (W):        213.807
Armature Copper Loss (W):        63.0689
Transistor Loss (W):        29.1838
Diode Loss (W):        1.01722
Total Loss (W):        320.848
Output Power (W):        1300.4
Input Power (W):        1621.25
Efficiency (%):        80.2098

Rated Speed (rpm):        59540.3
Rated Torque (N.m):        0.208564

Locked-Rotor Torque (N.m):        2.70919
Locked-Rotor Current (A):        178.037


   WINDING ARRANGEMENT

The 3-phase, 2-layer winding can be arranged in 6 slots as below:

AZBXCY


Angle per slot (elec. degrees):        60
Phase-A axis (elec. degrees):        30
First slot center (elec. degrees):        0



   TRANSIENT FEA INPUT DATA

For Armature Winding:
Number of Turns:        50
Parallel Branches:        1
Terminal Resistance (ohm):        0.549584
End Leakage Inductance (H):        9.44348e-006
2D Equivalent Value:
Equivalent Model Depth (mm):        45
Equivalent Stator Stacking Factor:        0.95
Equivalent Rotor Stacking Factor:        1
Equivalent Br (Tesla):        1.23
Equivalent Hc (kA/m):        890
Estimated Rotor Moment of Inertia (kg m^2):        1.34607e-005


这个是我改做之后的 ,你看看 还有什么问题?

cxj 发表于 2011-9-22 18:20

这个是我改过之后的

hxmotor 发表于 2011-9-22 23:02

楼主,想要提高效率。我感觉这个方案磁密还是过高:
Stator-Teeth Flux Density (Tesla):      1.77627
Stator-Yoke Flux Density (Tesla):      1.95799,造成铁耗占得比例较大:Iron-Core Loss (W):      213.807。同时感觉槽满率较低:Stator Slot Fill Factor (%):      68.9477,不知是否为自动下线?
建议降低磁密看看。减小定子槽型(自动下线就算了)或加大铁芯尺寸的方法。

cxj 发表于 2011-9-23 08:28

回复 18# hxmotor


    采用人工下线,槽满率应该差不多了,采用集中双层绕组,槽满率一般不大于70%。否则下线困难。轴向长度长了,临界速度会下降,我试了改槽数,但是没达到效果,我理论知识欠缺,希望通过过讨论能够更深刻的理解电机的设计!

kem1234 发表于 2012-2-24 16:46

不要选那么高的磁密
页: [1]
查看完整版本: 6万的无刷直流电机案例~请高手帮忙指正!