zuolin141 发表于 2024-6-15 13:30

maxwell 16 直线电机仿真

各位学长,请教一下,maxwell 16 直线电机仿真 峰值推力铁芯的深度 depth=30mm,怎样设置?在结果中会显示出来?**qCgsKqVas2btyoqKhIoVCgrx+fz29oaDAxMfl+whAIRGFhIYfDqays1NfXX7Vq1ffff3/16tWWlhYej5eZmXns2LGVK1cCbLy9vbu6ugQCAYvFqqysVFJS6uzsFFXmg+A7NDSUmpqqoKAAjU8FBAQYGRnFxcVNv4X9/f3x8fGnTp2aA77gtdn69euPHTs2G3xB6WDYS15evq6uTlSL6XUTcwybzUaj0QgEorGxUcwVm47vgwcP9PT0YmNjqVQqCoXasGEDGo0ef9Fob2/v4eEheoZhZWWlnJzcrVu3Ojo6Ghoazp8/j0KhoPr39PQ8fvxYR0eHMWEaGhqurq4ZGRm+vr6nTp3q6elhMBhaWlrR0dEdHR3x8fGXL1+uqKgQVZ7JZMbFxa2fsI6ODihnoVD4QfAlkUgxMTFnz56Ftl5js9ksFovD4YyMjJSXl2/evHn16tX79u2LjIxMTk7eu3fvX//6VxkZmZiYmEuXLsXFxbHZ7JaWlitXrrx8+bK7u9vIyAiBQOzcuXPdunUIBIJIJAqFQhaL5efn5+Pj4+XlpaGhMQXf4eHhvLw8VVVVIpE4pVOfji+VSk1NTVVVVf355581NTVra2vz8vK0tLRWrVq1bt06d3d3FovV0tJy8+bNo0ePgr5n1apVcXFxNBqNzWZHRETs3bt31YS9fPkSbPjl5eXl6+sL9rstLy/fvXv3mjVrfvnlF19f376+vtevXyMQiIMHD65bt27VqlVaWlqlpaUEAuHYsWPLli07ePBgYWGh6C380OHp+I6OjoJbBt4sSktLo9Hozs5OJyenmJgYaP9ZoVCYmprq5uZWVFQEBi6HhoY4HA5U4Sn4Xrp0KSws7MmTJ05OToGBgWBs0dPT09nZOSsra5x7W1tbaNK2UChks9kvX760tbWNi4vbt2+fOHpfDodTU1NjYmKyf//+gwcPuru7gy8rj8fD4XDgeIjc3FwPDw83N7fw8HAfH59Dhw6VlJQkJCScOXMmOjqazWY3NDRoa2uPz8DC4/EnT540MDB4NmHGxsbXr18HSvX09LS3t0dHR2tqak7Bl8fj0Wi0xsZGDocD/ZABTafjOzAwgEKhtm/f/vjx49ra2qamJh8fHzs7u+Tk5MDAQFVV1d7e3vr6eh0dHXl5+YcPH75+/drZ2VlNTa2xsRGHw3l7e1+5ciU7O7uoqAiFQjGZzNbWVmdnZzc3NyaTSaVS9fT0goODMzMzAwICwO1PTU1du3atm5tbRkZGWFgYEol0cXEhk8kxMTH79+9PTEyc8lIXouEDBabjCxVEp9MzMzMRCASJRKqrq1NTU/v3v/8tJSV1/PhxU1NTFosVFBQEXgEePXpURkbGysoKjLWDHDgcDgaDefDgwbEJu3//fnt7e3p6uqOj44MHD0Ca+Pj48eM/Hj16dOfOnX/+858Am0uXLjU0NHA4HAqF0tbWVlJSIiUl9cf4JiUlLYDvKxQKmUxmaWnpwwkzMzPT09MLCgpqbGwsLy+XlJRUVFTU0dE5cuSIoqKiu7s75DwkJyfPiK+6urq/v39PTw+FQnn+/Pnx48cHBgbA8wGDwYiNjZ2OL6T+9MCM+MbHxx84cACPx4+NjdFotOzsbGdn54sXL8rLy0tKSra0**U1Ojp6RkbG7e3t7PZ7OzsbFlZ2aqqqq6uLjc3t8OHD9va2mKxWPDrBuFLo9E6OzslJSXl5OS0tbVlJ+zWrVupqambNm168+YNi8Vqampydna2tramUCifjvMAdBscHExLSzM3N4+NjeVyuXl5eSdOnFBTU/P39/fw8Dh16lR8fLyrq6uWlpatrW1oaKibm5uqqmp8fDz0E0+j0TIyMpBIpN+EmZqapqWlJSQkiOILZiN5enpaWVnt2bPHy8vr4cOHSkpKQUFBYCkKm82urKx8J75hYWELg68oNKmpqSYmJgYGBlFRUcXFxTt27DAwMDAzM7OwsPDy8nrx4sU78TU0NHz+/PnQ0BDwPaSkpLq6uoBAC4Xvixcv5OTkgP9NpVITExNv3LhhZGSkrq6+ZcuWurq6qqoqc3NzFxcXGo0GvgCKioo1NTV0Oj0nJ+fGjRv6+voWFhYxMTED**Nzc2g9x0cHGxra9uxY4eOjs74XHILC4s7d+48f/58fGeN/fv3g74EmnH2qeE7ODg4PsHt1q1b4yd/ge1iW1tbw8LCXr9+PTw8TCAQ7OzskEikg4PDpUuXUlJSuFwuDoeztbVFIpHQQHhHR0dAQICGhgadTieTyWpqaiEhIVFRUaL4PnnyxMrKKjo6OikpKTw8HAxNuLq6Xrt2DY1GAxdiNvjGxsYuAL4sFguHw1VUVEATT8vKyu7cuePl5VVRUSElJQWOi8LhcI2NjfX19RC+mZmZ6urqoAFlZWUnT54EzoOBgUF0dPTAwMDg4OCrV6+OHDlCJpMXtvcVxbeurs7Kysre3r6jo+PZs2dbt26tr6+vqqoCEyahOQ8AX/AtYjKZ+fn5ioqKYHpDfX09wJdGo3V0dEhJSRUWFg4NDXV3d9fX1zc2NmZmZsrKyoKtbT9NfJlMZnp6uoODg4+PD7SBdmdnZ11dHYlEAkd+3LlzR1dXFxy7lJWVxeVyu7u7vby8dHV1oZfwYNbypUuX2Gw2lUrV0tIKDQ1NSEhwcXEZ/81hT5iNjc3du3ezs7MbGxvBOUtjY2P+/v7GxsbgGWCWve/CDJx1dnYGBwerqKjU1taCozFSU1Pv37//8uXL1tZWBQWFoKCgurq6mzdvmpubx8TEgLUSra2**U1586dc3V1RaPRjx8/3r17N8BXXl4eiURmZmbm5OSMn19paGgIPY29rffl8/kjIyO9vb3QVwj6QZjReRDFt6yszM7OzsXFpaSkxMbGZvPmzcXFxeXl5TPiC/ZbxmKxra2tRUVFCASiurq6trYW4MtgMPr7+xUUFLy9vcvKyry8vMCRiW/Dt7y8HBxqAub4QnX+0IHpvm9xcfHZs2fNzc0rKytxOFxHRwebzY6MjDQ0NHz06FFra2tSUtKRI0f8/f1LSkouXbrk6elZXV2dmZk5vu+Hv78/mIUyNDTU29v7+PFjBQWFoglTUVEJDw+vrq6+f//+6dOnQSQCgYiOjo6Pj79x48b169cxGExtbS04rayxsXH2ve/C4CsUCnE4nLm5ObSidu/evU+fPhUKhSMjI2g0esWKFUuWLNm6dWtoaOjAwEBWVtaGDRukpKTIZPLt27f/8Y9/fP311zt37gTTW/F4/Pnz56WkpDZu3PjVV18dOHBA9GzKt+HLYrGysrJkZWUJBALEOoDgnfhSKBRra+vvvvvuhx9+MDU1lZKSunHjRkpKyoz4xsXFHTt2DLT0iy++mPLoxmKxeDweGo3esmXL0qVLN2/e7Obm1tvbOyO+NBqNQCBs3Lhxz549ubm5HxpZ0fyn42ttbb1x40bQriVLlnz77bdoNHpkZMTDw2Pbtm0SEhLffffd+fPnQSb5+fkIBEJCQmLNmjWXL18Gc+jOnz8fHR1Np9NbW1uRSCTIytvbG9y++vp6AwMDEGlmZobFYoVCYVZW1uHDh0HkqVOnWltbQf5i7X3BFCdwCA/Yc3NsbAxiSCAQcLlcDocDhsHB2ZdcLhd0kzwej/tf4/F4fD6fSCSeP38+IiKCQqGAZFNGEvh8/tjY2JRIkO2M8aB6Uz4CmUB3FKoGj8cbGxsDNQF/QRowIwwsSx4bG4O2FgXNFAgEvAmDEkNN5vF40FWgzqKJgThT6gbV6sMFpuMLFIDaxeVyQW2heOiWQXqCewqcOqCPqBogK2hlNWg1iASaQLcMRE4RARJcVIQPMu4rWsD8wwBf8D2ef25wDjMqMB3fGZN9apGLAN+RkZGysjI8Hg+NxXxqIn4G9YHx/Qxu4p+3CTC+b733NBqtpqZG9**tyYV+QDMRCsqKgLLg2trazEYzJSpTCLJJ4N4PL6hoYFIJDIYjMLCwtgJKysrA6M/TCazqqoKRFZUVIiefjWZxfuECARCQ0NDV1fX+1z0yaWF8X3rLamvr7eysrp///57Tb8aGRmpra09ffo0iUSqqamxtrYODg6eTQ5PnjxxdHSMj48vKysbX3EuOWF6enqFhYUsFslRYBoAAAaeSURBVKu6utrAwGDHjh2SkpKGhoalpaXz9EnG55g6OjrOOBvprYp8eh/A+E69J3w+f3TCqqqqLC0tIXyheA6HAz2Gg4dNk**sTQaLS0tTVpauqura/zQUGtr64CAADqdDtJA4xhTS53Y5sPJyenehIHV8wwGw9TUNDAwsLi4+MGDB9LS0mCik6Gh4YMHD7q6uvh8PhjtGB0dBYvkoIdf8FgNfQoONOZyuaOjo+Bh/MWLF05OTigUanpNFlEMjO//3Cw6nZ6UlLRixYovvvhi//79srKyAN8Zx33z8/OlJmzZsmWrV6/29fUFx1Pu3r1bQkJi7969sbGx1tbWsrKyv/zyy5IlS1asWPHmzZu39cSFhYUoFKqyshKqEJFIVFdXd3d3H3+p6Ojo6OfnBz66f/++o6NjUlLSq1evVFRUZGRkJCQkTE1NdXV1t27dunnzZjs7O/B6SVdXV15efv369fv27bO0tATLfZWVlXE4XFlZGQqFKi4uhopbjAEY38m7xuVyi4uLVVVVg4ODwcRtZWXl8ZPUmUxme3v7mTNnEhMTwb5Mzs7OiYmJWVlZW7duDQsLa2lp8fPzMzExefr06cDAwLNnzw4dOlRbW1teXn727Fk1NbWkpKTq6mowB6inp6eqqurKlSubRUxBQQGNRrNYLDA1fmRkxM/P71//+peOjk5RUVFhYaEovqmpqZaWluHh4dHR0QcOHAgPD0ej0YcPH7a3t09JSfH397906VJvby+BQNi7dy+YZ3P79m05Obno6Gg0Gn3s2LGioiIajQYVNynBYgvB+E7esYGBgefPn6uqquJwOD6fX1hYaGxsHBwcPDg4WFpaun37dikpKVlZ2V27dklLS/v7++fm5kpJSTU0NHC53PGFBra2tnfv3u3u7gavzYDvC6YUkkgkFouVnJysoKDQ2tpKoVCqq6vTRAzwBFWFx+O1t7e/ePFCT0/v9u3bgYGBovhmZWWZm5uHhYXFxsaePHmyoaFhfIs+OTm5qKgoDAYTFRV14cIFcPz8kSNHUCgUFosNDg7W1tZubGwkEAiHDx8uKCh4248AVIdFEYDxnbxNvb29T5480dTUBLsiQI9uVCoVjUZLSko6ODh4enqC/UmLi4vfvHmjrKxMoVD4fH5/f7+Tk5OjoyMWixXFF3p0A0sSTpw40djYiMFgIiIizEXM29sbj8dPVmUixOFwXFxcwIwwUXzHJwHa2trGxsaOb+N35swZQKqysvLLly8JBIIovidOnMjIyCAQCKGhoQYGBiAljO8UncX/zw/y2mJwcBBsrzu+LRKfz8/JyTE0NAwKChocHATT3sD+tXV1dcXFxU1NTeOLAWVkZJqamrhcLnhK8/T07OnpeSe+ra2tISEh+iLm7OwM9mME+0AWFBSAjTzu3Llz9erVO3fueHh4mJubsybM1tbWzc0tLy8PxhfufSe/e1wut6Ki4sKFC66urnl5ec7OzkpKSgEBAUwmc/xkBzCnLDMz08LC4vr166mpqdnZ2du3b/f19X39+rWjo6OZmdmLFy+YTGZeXt5//vOf169fo9HoGXvfPxjzam1t9fb2Pn/+fGFhYUZGhpaWlpeX17jrEhcXNz6aljBhqqqqERERGAwGxhfGdxJfoVDIYDDS09N//PHH1atXIxAIdXV1sLEzmG/+448/rlmzZv/+/VFRUQMDA/n5+QcOHJCVlf3hhx+2bds2vs0yGCBraGjYuXOnrKxsYmLi7du3w8PDR0ZG2Gx2RUXFmTNnWlpapk+GFK1EW1ublpYWWOCqpKQEemIcDmdnZwciLS0tW1pamExmUlKSnp4eccIuXLiQnp5OJBLj4uJMTExA5JkzZ3Jzc4lEYlRUlIWFBYhUUlIqLi6GJraKFr3owjC+c7xlw8PD+fn5R44cIRAIs3mpNsdi4Mv+UAEY3z+U5+0fwvi+XRvxfQLjO0etwZZhYPnQ9Dm7c8wUvuw9FYDxfU/B4OSfkgJ/anz//ve/g6FQ+O8iVaC6urqmpmbRVb6srExDQ2O+e5ytWbOmHrbFrEBJSUlpaemia0FxcbGHh8d88f24Z1sIYZu3An9q5wHGd978fOQMPh98wTJl+C+sAKwArACsgHgV+Mg/Y3DxsALzUOC99zibR1nwpbACC6wAjO8CCwpnJ04FYHzFqTZc1gIrAOO7wILC2YlTARhfcaoNl7XACsD4LrCgcHbiVADGV5xqw2UtsAIwvgssKJydOBWA8RWn2nBZC6wAjO8CCwpnJ04F/h81Lc24xCmSuAAAAABJRU5ErkJggg==

蓝海翊 发表于 2024-6-17 13:43

这个模型的铁芯深度是铁芯长度的意思么? 如果是铁芯长度,建模的时候应该就设置了这个参数, 直接参数化就可以了

zuolin141 发表于 2024-6-17 13:53

感谢2楼的回复,是指铁芯长度,我试过参数化设置,不出效果,不知道是不是操作有问题。
页: [1]
查看完整版本: maxwell 16 直线电机仿真