motor小精灵 发表于 2024-5-31 18:57

电机快速数字设计方案分享

本帖最后由 motor小精灵 于 2024-5-31 23:10 编辑

电机快速数字设计软件是基于伏图(Simdroid)通用仿真平台开发的,它涵盖了磁路、电磁、结构、热流以及优化理论等多个学科领域。该软件具有电机方案快速磁路设计、多物理场仿真设计以及性能优化设计等多个仿真应用功能,同时具备一键有限元建模功能,可快速实现物理场建模分析。它适用于电机的初期方案设计与优化、电磁方案的详细分析设计与优化、结构强度以及振动问题的分析与优化、冷却系统的设计分析与优化。
背景说明:
电机经过一百多年的发展,其理论和工程实践已非常完善,同时随着控制器和控制理论的完善,然而在电机数字设计和数字实验的应用仍然不够充分。电机的数字设计与数字实验主要包括电磁、结构和热流三个方面,传统的电机设计应用方法,其计算量和流程繁琐复杂,效率低下,且只能得到电机各个方面性能的初步结果,无法获得精确的性能结果,更难以考虑各物理场性能的耦合问题。因此,需要针对电机数字设计和数字实验应用开发相应的设计仿真应用平台,根据用户需求定制开发专用设计仿真功能,帮助用户加快数字设计和数字实验,从而缩短研发周期,降低研发成本。功能特点:电机快速数字设计软件基于伏图(Simdroid)通用仿真平台进行开发设计,涵盖了磁路、电磁、结构、热流以及优化理论等多个学科领域,以实现电机全流程设计为目标,具备电机方案快速磁路设计、多物理场仿真设计以及性能优化设计等多个仿真应用功能,同时具备一键有限元建模功能,快速实现物理场建模分析。https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313449377_5mwug8.avif?imageView2/0
[*]适用于电机的初期方案设计与优化。内置常用的电机全参数化建模模板,实现电机初期方案的快速构建,基于等效磁路法分析电机在各种工况负载下的电磁性能、输出特性以及效率等,快速完成电机初期方案的分析计算。辅助用户在电机前期设计阶段,快速评估迭代电机设计及性能。
[*]适用于电机电磁方案的详细分析设计与优化。基于麦克斯韦方程组与有限元理论分析电机静止或运动状态的电磁场分布,基于虚功原理求解电磁力/转矩,得到电机的电磁特性与输出特性。帮助用户在电磁方案详细设计阶段,验证评估初期方案的性能,优化详细电磁设计方案。
[*]适用于电机结构强度以及振动问题的分析与优化。可模拟电机受外载荷、自身载荷以及两者共同作用下的状态,开展电机结构强度的校核、振动问题的评估以及优化。帮助用户预判结构破坏风险点、发现结构潜在共振问题、优化结构与振动响应阶次,确保电机结构设计方案合理性。
[*]适用于电机冷却系统的设计分析与优化。可用于自然散热、强制风冷、水冷和油冷的散热性能模拟,可指导散热翅片、风冷参数、水冷/油冷管道以及参数的设计优化。帮助用户预判热点风险区域、选择合理的冷却方式、优化冷却结构,确保电机冷却系统设计方案的合理性。
功能模块:1、电机方案数字设计迭代模块1)适用于电机的初期方案设计与优化;2)内置常用的电机全参数化建模模板,实现电机初期方案的快速构建;3)基于等效磁路法分析电机在各种工况负载下的电磁性能、输出特性以及效率等;4)辅助用户在电机前期设计阶段,快速评估迭代电机尺寸设计、绕组设计、电气设计以及电机性能;5)快速生成有限元分析模型开展详细设计与优化。https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313450823_rhrbjz.avif?imageView2/02、电机电磁性能数字模拟计算模块1)电机电磁场求解•   静电场、瞬态电场、静磁场、时谐磁场、瞬态磁场与场路耦合等。2)电机运动问题•旋转电机的2D/3D旋转运动;•直线电机的2D/3D直线运动。3)电机电磁场量计算•磁场强度、磁感应强度、磁力线、磁场能量、损耗密度、电流密度、电磁力密度等。4)电机电磁特性计算•电感矩阵、电容矩阵、电阻;•涡流损耗、铁芯损耗;•电磁力、电磁力矩;•三相电流、电压与D、Q轴电流、电感等https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313451177_0z2ydy.avif?imageView2/03、电机结构强度与NVH数字模拟分析模块1)电机结构动力学分析• 线性\非线性静力分析:静载荷作用;• 模太分析:各阶模态频率、振型,确定振动特性;• 谐响应分析:电磁力谐波作用的稳态响应、受迫振动;• 瞬态动力分析:准静力载荷的时域分析;• 随机振动分析:功率谱密度载荷、响应的概率分布。2)电机电磁-结构耦合分析•分析电磁力作用下的振动响应https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313450475_agm4i6.avif?imageView2/0https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313449788_s5u7rv.avif?imageView2/04、电机散热性能数字模拟分析模块1)有限体积流域求解•稳态、瞬态分析•强制/自然对流、共轭传热、辐射传热•单相流、多相流等2)电机温度分布计算•电机冷却系统的稳态热流分析,获取局部热点位置。3)电机冷却介质流动分析•   风冷、水冷、油冷等;•   为冷却系统设计提供参考。4)电机温升计算•   电机总成在不同工况下的瞬态温升仿真。5)电机电磁-热-流耦合分析•   单向、双向耦合迭代。https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313451589_xtovph.avif?imageView2/0https://public.fangzhenxiu.com/fixComment/commentContent/imgs/1715313450169_0mzayh.avif?imageView2/0
获取更多电机快速数字设计方案,看个人签名**eDq1JPfxwDf9waN7EqiUPxtN3vzqlbupEO6+O94rnUeomMyaTQZtSNylK3KbUE3PkaMGqbhEWiDNMgwt4wBIX8ICU0BAX8KYguYC3EodH4MEReIujoMsFfECF7/tcwJtsxGmzqgNyWNUBKaEhVnVWdc/zeBNrBDexsqqbXzus6iYbcdqs6oCcjRs3jkp5W7x4MXDtp0vqZ5xxxgy0aY89NitP0NbubIMT8X0fDTgjNzc3cJhc48ILL4T0b9myRUZy6NAhaKyB06ZNk2E/++yz0rOGZM7JNjmRGTNmvPrqqzDy8FJfu3atxl54fPny5TCMzPqtDkOMCkz9MZKwqicnKutTrlK3Ph5V1+nRFK77xekmVug8c6QOCR8+fDgMO7zU4cejAin1VA/Lwb3uClLqYRKaUg/DkmZDqVPq9d9LrOqWTsI/DMfzPFb1ofWpZLQsThugywW8QT9uUupWHlLqJiFRPlvO9Bt5m1LH+jZQSt3KOkrdJIRSN7SSbJO/1c2U0tr8ra4xEwbnb3X+Vq//fmJVtzTDqm4SkmRV79TgW/PmzeuTuq6VnQ2kXlZWBqN7/fXXt4lt7dq1dc5i/i8oKBC2x4AWLVrE2H3T0**0KFDYSTQ8/Tp06XnP/7xj9BYWnqep0n9+uuvl2FccMEFZh4E7ZkzZ0rjTp06/fvf/5aRrFy5EhrPmzcvcBg0YFXPysqSbrdt2zZy5EjoOfBmNlatWgWN58+fD51D9pwOy8Hh0grCe++7d+9u8hC/naTUIVkND0Kpa8+W27Rpk+SiqqoKhl1UVCSNfd93krr2wCnoGV4YW1ZWBo1hzJrUe/ToIe1btmwJPRcWFkrjrw9Qw5tYtZcul5SUSOdQ6trbXUaMGAHDkG5931+2bBk01l75AI2dpA49NDxIqc+BpFPqJi2UusmG68k267PHq0upU+oxxY9VPYYO34fKZFXH59UhWQ0PcgFvcs4FvMmG53lcwJvfcfytzt/qZj74/K0eQ4fvw2vgre+U49XlAp4L+Jh05QI+hg4u4C06artjxozJzuCtb9++Muznn38ehvzBBx9I4507d0LjJ598Uho3/BH46dOnV6INxpyXl4dsK7t16ybLjnZY7vHHH4fO33rrLel8+fLl0HjBggWSvUiOwMsYKisrn376aTnBqBbwffv2hXPMBHDw4MGSZw1JsIDXPvatxRv4ZBvMYM/De0175QN0okld27NpuonV9WQbnIsGRvJbXSOk0eE4aRrdNBosYErd1JX20mW4OyKp6uboCduUurkjKHWTjcRtSt0UGKWeOGMyxoJSd9sVlDql7pYxGWNNqbvtCkqdUnfLmIyxptTddgWlTqm7ZUzGWEcp9Q8//HAO2j766CM535qaGmTrhj3//PPS8zvvvAO97N27Vxq7IumT+j//+c9hYtOu34Bhr1u3Tjg4BrRv397UZ237pJNOgixp4IgRI6Tz3//+9zASCI4ZM0Z6GDt2LDSeO3euNB42bJiciOd5nTp1gsZFRUVwOtC4oKAAGn/22WcwwvDgggULpOfS0tLwHnzff+qpp6STF198MbyTKKWuvfJhxYoVMqCjR4/C3eYEpn5hrAwsPpI+qcNxb7nlFkgINNZAeAkNdBsHhHe2aSOmD4cR9uvXD46o3a8OjWfPng2dV1ZWQvvwILyuoW3btuE9+L6f9kdTOEVDqVt0Od3Ean22tkupW7RANVLqFkuwy6oOaVFBVnWVmgb5A6VuMhDlNfBOu49V3aKLVd0iJPWumehBm1U9DLGs6mFYqrdhVa/n4ni0AnmbDUo9zK6g1MOwVG9DqddzcTxapsKDNqUeZldQ6mFYqreh1Ou5OB6tQN5mg1IPsyuSlHoO2oYMGbIJbdXV1TIU15NtK1eulL5XrFghAznrrLPMPAja8NlyMrBapKioSHrOycl5++23ZRgvvvgiNH7mmWeksRYGdNK6desgfrMBh7vvvvvgdLZs2QLDgODIkSPNgYJ2dna2HPSGG26AI6YPDOIxG5rU//vf/8I5yonk5OTAqw88zzv//POhvQQfeughOHF4sq158+bSQ05OzuOPPw6dHLeTbSbRQdtpx7tKfdu2bZKCysrKYPSEDU1j0q3v+/n5+dDhkSNHpP3q1auh8cKFC6WxhsAnxkK3Gqg9cEobEeLaU2jgoE63u8DhXEEYhiZ1zTl0kjp4++23wxGh1LXhJk2aBJ1Q6pR6fc5Q6lAkEqynLNIWpS6pPoawqlu8sKpbhMAu1CarOuTKApP8rQ4Z5wLeooULeCvbUu9aDNd2KfUwxFLqmCX+VoeiskD+VjcJ4QIea4kLeIsXLuAtQmDXlFbQZlWHXFng8azqHdF2xhlnBLvQbKxdu7ZKbK+//rppU9tu1aoVctzx/ffftybv+/5XX30lvB4DtPslt27dKu3/9re/wRFfeuklOaLv+9JDVVXVnDlzoJPw4G233QY9Hzp0SIZRU1MDjUePHi0p9TyvQ4cOMpKrr74aOoGnV3fs2CGNd+7cKWOLg8DY0ir19u3by4nDMH7xi1/ICVZVVfXq1Ut66NChA3TSBI/Aa7tzxowZkILw4LBhwzTnEtdezxh+OM/ztDexyuFqEeg8Ly9Psw+Ja0+MXbNmjfRQXV0Nw9BAeBNr+l7PKAOuRWB4aZU6vIkVhqGBGzZskNPZs2cPtKfUIS0YpNQtXih1S2kWP/G7lDrgx+kIvMV+0GVVD6hwbbCqh2QM5K4OUeqAG0o9lVTjAj4MeyDtPI8L+FDUhTGSNpBxSl0SBRHIHqUOubJASB2lbrEEu8ftCDyMxvd9LuA1ZhLiXMAnpKjWAH5faCAX8IAZVvVUUo1VPQx7IO24gA9DnO8nqOoLFizIRxtkvEuXLsg2f/PmzeGCOWalVfWCgoKicNukSZNgGB9//LEMY//+/eG8xrN65JFH4IgaCH1pYUMnciK+7ztV9cOHD8Mw+vfvD3eu08m2/v37y7CnTJkiR5w8ebK0jIPA2FwX8DKMoqIi7elgsKpDDxoIE++LL76A9uPHj4fTnzp1qrQvKyuDmQDBBFIfOnQoJNcJhA+HhtHEkTq8iRU6mTPH4f3q0IMrqN3EqrEE/TtdLQc9OEkdevj6rdLaTaxOUocT37Jlixx08+bN0NgJdJW6DMP3/fQ9HBoOp4Hjxo2Dc9+/f7/2kZA4pR6SqHhmlDrMTguk1OPlUN3fKHWPVd1UTl1ixPzPqh5Dh2OHVZ0L+MQpw6pufg1pbVb1xJnk+6zqrOoxCoJJw6oOaQkJsqqzqidOFVb1mO8hpcOqnjiTWNU9j1U9RkAwaVjVIS0hQVZ1h6p+3XXXHUFbnz59WoTeTjjhhJikruuEdtBC8wCfGPvRRx+F96xZ/t///R+a95EbbrihLvyY/6EfGPaf//xn6Bmmb01NDTSuqamB9hDUTrbBmLt16wZHhCAcLq0n26699loYNgQh/57nwfPq0IN2EdRll10m7b/3ve9BQo4ePQrZa9OmjXRy5ZVXQicQjPJkm3a1XK9evWIy/Th1oNTTer+6dlVGeAKcrpGAO9gV1KQOY079gVNplbr20mU4Fw2EUofGTg+cyriXLjtdQkOpW7qi1C1CZJdSl5xAJO3PgafU4fe3BWpPoaHUYdaaIKVushGnTalboovX5QI+TiYFf+IC3sohLuAtQo51uYAPBFPbYFW3CJFdVnXJCURY1cE3jgaxqsMcskBWdSt/vi1VferUqT3RZtFR29Wq+r333it9XHXVVdDJOeecI42dkOzsbOgZSv2TTz6Bzs855xzoBIIXX3zxarT9+te/hs6hEwhqR+DRaNFgkyZNgjGfeOKJMsL0HYHv0qULDAOC999/v/WFVdvVjsBDJxq4cOFCySw0fvTRR2EY8PWMGXcEHobu+77c63EW8NCJ9sqHUaNGQfvwYCQ3sWpvd4ET10DtRU6avcQ1qUvLqJCCggJIdbt27eQQ6ZP6rFmzYBhOoCZ1Jyewcjh5oNSPytTxPI9SN2mh1J1EZRlT6iYhCS6hMU3NtpmOQVtbwJsfDNqs6gFvcRqUepAwSTQodZM0St1ko77NBXw9F9+0uIA3v5EtcuJ3uYDnAt5MHtxmVY+vovh/ZVU3+WFVN9mob7Oq13PxTYtV3fwytsiJ32VVZ1U3kwe3WdXjqyj+X1nVTX4SVPXZs2cPQttCtMHXAPrf3G0vfQwcOBBmd5cuXaSxEzJ69GgU3cLPP//cnHlte8+ePdB5YWEhdNK8eXMYNgSvuOIK6Bwa9+nTR444atSo8B6gW8/zpkyZIj1rN7dfeOGFcMS5c+dKJ6+99pqk1Pf9WbNmQScSvPXWW6XbhQsXPvjgg9J40KBBcLgNGzZA4+LiYugcOtHA5cuXSydwuJkzZ0InTlX9+eefh85btGgh92/37t3hiBBMIHXtdhfoSwMb+CbWSN7EWlRUBKcDGZf7IAkE3u18yy23JOHK+gj8Co7kpcuQIt/38/LyrBi0bufOnaGTESNGwI9A42XLlkHjpUuXQvvUQThcJDexas+WgyNS6hG8X51St3ILPgde0wylbjLjVNUpdSvx4nVZ1S12WNVN4UXSthiu7bKq+1zAw8ywQC7gTRFyAW+lB+xyAc8FfExisKqbXyKRtGP4reuwqrOq1+VC3P9Z1U0RsqrHTZb//ZFVnVU9Jk9Y1c0vkUjaMfzWdb5FVX3RokV1s475P31vYq2srIwZKW4H3q+uPTFWOwIPE8X1lQ8wTFjV4XCuYI8ePeSILVu2hH6cHk0h3dYiJSUl0nlWVpZmL3HtJlZp6envV9cuoYFOnEA5O9/3S0tLoZMNGzZA+wYGozyvTqnDPR0SpNRNoij1yL8IKPUqM8OCNqt6QEUSDVZ1kzRWdfy1NWPGDJOmoA1fuswFPCYxFuUCPsiiqBqxBP+vxwW8x9/qYTKMC3iTJS7g4bdJKiAX8FzAx+QPD8uZ3zhaO4ayug6rOqu6ljAxOKu6SQeret0XSGT/H7eqXlNTU4K23Nxcc5cH7enTp0vz2bNn54XeiouLpQft0IB2WK60tFQ6GT16dBCn2ejTpw+MzrQJ2j/96U+l582bN8NdLS1LSkpWrlwJjQsLC2UYQ4cOhU4mTpwojTVEuxMZHpbLz8/X/Ehcuz02oMts9OvXD078sccek55dkdatW5tj1bYhdZMnT4bOt27dCsOD4Pr166FzCC5ZsgQ6geBxk7r2GElJaxwkOzsbzgqCOTk5cVxZf9Kk7nQTawM/HDo3NxdOHILaTazaw6Ghk/Lycou32i6UOvTgCsLhNKm7Oof28OHQMAztEhroVgMbx51tTufVKXWYLhbo9BQaSl3TTyo4pQ7Yo9QtobKqgyxJDbIYru2yqochlQt4mDweF/BhsocLeDN7uIDHR+C5gDezRGtzAW9940CiWNUtlmCXVR0mD6s6zBYbZFU3s6dpVvVb0DZq1KgytO3cudPOEd/XqvqAAQOQD4wtXrxYetaQJUuWYC8IHTt2LJriLc8++ywyxxi8mNf3fWyN0Pz8fBiGmWFBOysrCxpDcMiQIWjAsokTJ0J7+LzdvXv3QifaOUJt14TH4XDambmioiI4FzjcK6+8Ao1PP/30gOH4jaYpdTjnDHlnG9yRrqD2yocjR464ukrFPpInxsKd5XoTq9NjJFOZcoSf1W5ihUPMnj0bEhUepNQhsWpVT/1NrHg8R5RSt1KcUrcIkV1KHYtMW8BT6iZfrOomG65tVnWTsSQPy8mvNM/zuIA3mY2kTamnQiOlbrJHqZts1Le5gLe+zbmAtwiRXS7g6/VjtriAN9nQ2qzqGjNhcFZ1kyVWdZON+jarulW1WNUtQmS3cVf1+tyPbcl5xvmtDt/ucsIJJ8S6/F9Pu6sUj**pxc5wRh839ekDkfs2bMn9DNo0CBoD0Gn+9WhBydQO9kGJ6KB2iU0MJItW7ZoflLEtdczwjAiAWHA2qMp4Iht27aFTo7bnW0wGt/3YfTaYTlKHdJlgZS6lmwJcUo9IUXHNBvGSNpYaVrbpdQtoljVzTxhVTfZYFX3uYC3vi9g10ya5NpcwCfHW+2n4E7hAh6/s42/1a1U4wIe6icMyAV8GJa4gMcs8bAc5iUW5WE5kw9WdVZ1q37jLqu6KRunNqt6GLoSVPW1a9fOQ1su2kaOHIls533/+9+X2e26gL/uuuvQmAB78sknw8y81ubgwYMw5uuuu07G7HnezTffLIccP348HDFDDsv17dtXxnzrrbfCmJ1ArapffvnlcsRPPvkkvPP169fD/QLBMWPGwJ3lBHbp0kXGnJubC29ihWEUFRVBD23atJGRZNxhuaFDh8ooPQ9/QWjPloMeXKWu3fsdPnugpfYmVhiz53lON7FmiNThS5chG66gJvXUnxirvV9d2y+p48OHD4fTT/0xkt26dZPhUerqEXhK3UxEmTpxEEo9DjnBnyh1VvUgGY41WNXNbxxWdTM5tAtjWdXdLoxlVTc1ZmZYwjarekKKPM9jVWdVj8kTVnXzG4dV3UwOVnWTjfo2D8vVc/FNK30n21jVLaphl1WdVT0mMVjVWdVjEsLoNM2q3gNtF154oTHx+ubs2bPXiO2NN95APno8+OCDwvYY0L9/f2gvwalTp5rpGLRzc3Ol8aWXXlofqNEaMWIEDKOmpiZwmLBRUVEBnUDwgw8+kA7Hjx8vY+7Ro4cRaeKmU1UvLS2FI0Kwa9eucPjUT7Z9+OGHkKVIQBhz+/bt4RxPOeUUaC/Bdu3aQQ8vvPCCDPutt96Su9v3fe0m1hUrVkgnGzduhE4giM+QB6baeXU5zzjIihUrAodBw/UpNJ06dYozhPkn7X71SN7EGsTfMI1InkLjJPXCwkKTzOTaqUs9rfQmN6mkP7Vhw4bw09Gkvn///vBOoCWljveg9s42SGL6QEo9HdziXZ42lFI/CrnVHg7Nqg7pCgOyqlvfF2FIi9CGUqfUrQwEXVZ1QErKUIQyDuOKUqfUE+cspZ6YI3eLMPqM0IZSp9QTJymlnpgjd4sIZRzGVeOQ+vDhw1umvL388svVYtu/fz+k6e677xa2x4Ds7GwZyKmnniqdaEfgu3XrJj1oSFFREQwDgl988QXMty+//BLahweHDBmiRSjxk08+WbLhed7KlSvDjzh+/Hjo5NRTT5Ujaiei4BH4gwcPyjAOHjwIqTt06JA0dkW++uor6FxOpGXLlieddBKceHiwRYsW0PObb74pI9cmrh2B37Vrl3SiJR6cdYIj8PAzriB8Ymx4Bmst4TXwlZWV0o8mdaewG/4pNHIinueVlZWFD3vevHnQSSQgfA6804WxWVlZMpLOnTvDCUZyE+vSpUuhcwim702sjeN2F0iKK0ipyxQPiVDqIYmCZpS6KVVWdZON+jaruiUeVnWLENlt3BfG1ud+Ci1WdZkWIRFW9ZBEQTNWdVO1rOomG/VtVnVLPKzqFiGyy6qOnxgrmYqP8LBc/feQ0uJhOSuFWNXNTGFVN9mob7OqW7JhVbcIkd2mWdUL0TZ//vx6rRgt+Fu9WbNmBWjr27evJNHzvPz8fDnmfffdJ427d+8uLQsLC3fv3m0ElaCpSf2hhx6SUWuPo9aeGCs9FBQUXHvttXIu2m91OMGJEydCzx07dpSeXREo9R07dsAR161bJ/l1Otm2ZMkS6BmGff7550PjiooKGYbv+5C9CRMmQCdt27aVg0LLhx9+GHru0KGD9JBxT4yFTGX4m1glrbXIpk2btOlIXJN6JI+mkMP5vl9SUiIj16QuLT3Py83NhZ5d72+HzqHU4XAa6CR1zQmMrV+/fpo9xKETp6fQQLd8uwv+re76wCm4e5xASt2JLsuYUjcJodRvgBTABTylbnHFqm4RArum3oI2qzrkygKTPCwXsGw2MuT96mZIZptV3WTDtc2qbjJmqai2ywU8F/Bmkhxrw0RhVYe0WKBN5Td9VnWLJdjFaQdNTRAyzqpuUuT7vnYE3jKr7VLqkBYLhIlHqVsswS6lDmnxeQTeEhUX8CYhMGka9wJ+5MiR7dBmTjtoR1LVDx48uCu1bdq0aUFIZgP+Vt++fTuaX7upU6fCKOA+1sDUq/rpp58OwzPnFbQjOdk2cuRIOPELLrgARgLBv/zlL5KTPXv2SM/r16+HHjQwmKzZcK3qMoxdu3bNnDkTDtq8eXNzrNo2tLzzzjuhZwhqV3kcOHAA2rdq1UqG0b17d8mzhiSo6k4Ph45E6lqg4fE5c+ZIUr4+7Qylrr10OZInxqYudTgRDYxE6gUFBZDqdu3aaeNKHD6aArrdvHmz/Lgr4ip1GEn67leHw7mCp512mqSFUqfUYxLJ6RIaSl0qKiSiXRgbszOS7VDqgDlWdYsUSt0iBHZZ1fE72+D3HBfwVg5xAW8RIrtcwEtOIMKqDmhhVbdIYVW3CIFdVnVWdZgYoUBW9YQ0saonpKjWIO1VfcKECV3RFskCvhxt27dvh5N/9913pfl7770njefPn49C7vqf//xHGn/88cfQuLS0VBq7IprU5UTKy8tnzZolI2nTpg2kGoKRHIG/8847YXhnnnmmHPSUU06RMXft2nXWrFnSyaFDhySBx0XqMrby8vLHHnsMzkV75LZk4/rrr4eetedASzZ839+5cyd0cvnll8vwfvWrX0EnEExwsg1+JpKbWCVTtYjTO9uys7O1CDMB16QO556XlydjdnrlQyRSh7FpYNeuXWXMvu/n5eXJj2zZskUaHxepy9g8z3O6iRV60MDG8coHuW9qETgrp8Ny0IPneZS6yTmlruWJibueVzc/G7QpdTPx6tsBQWaDUq8n6JsWq7qZHqzqVnrArvZ2l7S/Xx1GwwW8RouFU+qUuud5XMCbaVDf5m5zxi4AABSjSURBVALe/L7gAr4+M/QWF/BmzmhtHpbTmIkAZ1U35ckFfJiU4gLe79Spk5k3tW0egTc54RH4MFrSfn5+2w/LlZaW5qGtBG3Tpk1DtnmPPfYYMsfYm2++CXfYvHnz5Admz54tR3z22WehBydw/vz50nNeXt7Ro0eln4qKCmhcVFQkY9aQyZMnSydTpkyB9qbCg/Z5550nPeTl5TndlBZ4C9No27YtHHHy5MkybHhg6fPPP5eWJSUlvXv3hgFA42XLlsmdEgeBnnNycuBcWrduDe3Dg06/1devXw/nOHToUBne73//+zjTtP6UYAGv3cRqeantLlq0CM5/xYoV0D51sOFfugwfDr169Wo48YULF4afY+pPoYExHBcw/E2sGj/aS5c1eye8gTlxkro2kbRfLUepW2lBqVuEwC6lbtJCqWvfXw44q7qZUpnTptTNfUGpO0haM6XUzZTKnDalbu4LSl3TrwNOqZsplTltSt3cF5S6g6Q1U0rdTKnMaVPq5r5oglKvrq7egraBAwdmie28887TBAzxHj16CB9ZP/nJT+SAe/bsgR569+4tPVxxxRXQ2Onh0Ok7Av/d735XxpyVlSVnHQe55JJLzMyL3x4xYkQcV9afli1bBr1Bqf/4xz+Wc+nZsyfkXzsCLz1kZWXdeuut0IkGWrOI3z333HPhHCV40003QVfw7t29e/fCucycOROGnVlH4GGIvu/2dhfNSeqX0OTk5Mjd07FjRzhihkhdBlyLwJg1MJKn0EDn5eXlMEIodac3sWpSh8O5XhgL56KB2dnZcFAJOj1Gcs+ePdKD53mTJk2CkVDqDverU+owtyxQe2IszD9K3WSPUmdVhzKxQXgJjZlJZtv+cNw+q3pcehL8kVU9AUHmn51eumx+0GxzAU+pmwyYbS7gTaVo7SgvjNXGoNQ1ZkycVd1kg7/VTTZ83+dvdf5Wt1ICdLmAB6SEhr7tC/jNLtuNN97YWWza/ad79+6Fvnv06CF8dO7Tp0/oXeZfc8010kP37t3hcHfeeae5RAzaFRUV0n7u3LmBgdl4/PHHpbGGTJkyxfxs/Hb4Wfu+P3jwYDlxDRk7diyM8KuvvpKDOh2W69mzpxy0V69e0u3X95lOmDBBGnfu3BnSctVVV8GYq6uroXNo/Mknn0DjPn36wEgkOGzYMOj5yy+/lJ4/++wz6aFz587FxcXS2Pf9H/7wh9J+0KBB0BiCSS7gIeMa6HRn24wZM6Cfbdu2wQmkCGqvZ4QxZA6Y4qzjfLywsBBOE7502UnqcQYN/ycYmwYuXboUeob22v3q0AMEtZcuR3IJDRzRCaTUq+COz3DQaR87GVPqTnSZxpS6x6oe+ReHmWHRtin1pPmk1Cn1yJWeYC2WdLL6vk+pJ80epU6pU+pJy8f+oBOV/K1u0pegPmhPoXFinAt4J7rCGJu7MNo2q3rSfLKqs6qHEa+bTdLpmPCDlHpCijSDpin1WWi76667YMIOHDhwROht3LhxyPeskSNHhvaBDXfu3Cl3UiQn27p06QJj1kDIEgSHDBkCncAZPv3003KCrogm9TvuuEMOev/998Pw3n33XddxLfv58+fL4bRL6C666CIYxujRo6ETaLxq1SorBtfupk2boOf7779fhvHAAw84+R81apR0Mm3atPBOklzAwwG0J8bCJNZAp7e7aE4gvmnTJhl2JFLXbrqWw9UiMDwIlpWVQSfQWHsOPPSggZrU4Yjam1g15+FxTdUwDO0a+AEDBkD78GFEYtmtWzcZRtu2bZ2cZ9aFsZR6yJ0nd7yGUOoaMyZOqYdJPFb1CC6hYVUPk2pONqzqFl2s6uaXe4I2F/BW9sAuF/CQllRALuCxMvlb3eSFC3iTDa3NBXyYbyIu4LmAj8kTVvUYOqLosKrj72hWdZMXVnWTDa3Nqh7mGylBVddcaKRDHF4td/ToUWisgWm6iVWbYMPj8Ck0mtRhePPmzYPsrVmzRtpXV1dDYydQO9mWl5fn5KeBjSUbrggMOJLHSELPGti9e/fwkVPq4blKryWlriV05HjqOxKGRKnjC2NZ1a2Eo9ShftIBWswn0YVRUeqUeqhcotShftIBhtofcY1gVJQ6pR43a+r+SKlD/aQDrKM8+f9hVJQ6pR4qpSh1qJ90gKH2R1wjGBWlTqnHzZq6P1LqUD/pAOsoT/5/GFXjlvrbb7+9DG39XLZ//etfklTtsFxWVhb0vWDBAhRIqph262JFRQV0XVNTI+fy6aefQuOPP/5YGvu+D41HjRolE8jpZNuqVasgdaWlpXLEv//979A4/GPPPc/L8JNtl112GZwj3Cnbtm2TLC1btgw+YVruKc/zrrnmGugBgosWLYKxaQ/AhiNGebJNewoNJMsJ1KSevktoIFnH5U2sMBIIOkld4x++8qFly5bQPpKr5TLkvLr2wCk48dmzZ8NdUFlZKe2hpROo3cQ6bty48H4o9fBceZS6lceUupU9lLqVIc5dVnUrpWCXVR3SEhJkVTdlmeBqOS7graw6cuSISV9te/Xq1ZZZbXfhwoXS+Ou3FEFjCFLqkJaQIKVuph+l3tGkI2jn5+fDfKLUTVoy/LAcpR7k87ECY3Zkm1XdzGzP8yh1kxBK3WTDqc3Dch6PwJsZwwW8yYZrm1XdLN4JqvrGjRuXom2Ay1ZeXm4OWdvWDsude+650Pf8+fNlIE899ZTr7rfsXY/A9+/fX4Z3xRVXWG5ru06/1X/2s5/JCX700UeSOg1ZvXq1jG3AgAFPP/209Pzyyy9DP5s3b5bGS5cuPeOMM+QcTz/9dDjiOeecI42feeYZ6RleOOR53m9+8xtpvHTpUuk2DqJJHcb8wAMPwBF/+ctfSntoCa+M8DyvuLhY2r/yyiuQ/8rKSmmsIW+88QZ0AsEEUoefcTqw5HlpvFqusrIyzp4O8ydXqYfxGdg4ST0vL09jOyTudL96SJ+BWbt27YJ5JdfYsmVL4C1obN68GXqbNWtWYGM2oLEGalKH9tpLl+E1RWZIQbtxv/IhmIbVgGRpYPoeTUGpm/uFUrcykFI304NV3e0IvJVM8bus6iY/rOqm8Bq+TalT6qGyjgt482sLUsYFPH+r24lhJk3Q5m/1gArP8/hb3U6alPus6qzqoZKIVd38JoKUsaqzqtuJYSZN0GZVD6hgVbczJop+gqrudLWc9npGpyPwTpfQZGdnSxLmzJljJk3Qhi9ykh+Pj7Ro0SJwmHQDDgHPMGuX0MChtTexOt3ECmPzfd+pqpeUlEg/WVlZMGwIRrKAh54bHtywYYNko+ERSt2Nc0o9jFQodZMlSh2/8oFV3cwSVnXrm9gkp7G0KXVKPSaNuYA3pcsFfExyRNHhAt6NRS7gTUFqbS7gTWZY1VnVY75lWNVNebCqxyRHFB1WdTcWWdVNQWptVnWTmcZR1Z977rnhaIP6KC8vR7bDKyoqpH1NTQ00fuGFF6Sx7/sFBQXSfvz48dK44U+2nX322TK24cOHn3feeeYuD9qz0XbLLbcEBkHj9ttvR7b42aaXXXYZNIZhaE+MXbduHXRy2mmnBVEFje985ztw4o888oh00rZt2+CDQaN169bQg/bQbmh87bXXBg7Nxs9//nNob9oE7R/84AfQODzYu3fvwJvZeOihhyQb8NvQ9/0333xTGmuIJhYpisRPoYGfyXCw4aXes2dPyMmgQYPMXZ5RbU3qDfzE2M6dO0PqnMBly5ZBbiO5sy18JNrVcjC2jHsKTfh5Zo4lpQ5zywIpdYsQ7X718IlNqYfnKhpLSt1KYtil1C1aKPVo5NeQXih1K4lhl1K3aKHUG1Kk0YxFqVtJDLuUukULpR6N/BrSC6VuJTHsUuoWLZR6Q4o0mrEodSuJYZdSt2j5tkt9zJgx2Rm89e3bV349fPbZZ5VoO3TokDTeuXOn0/yaNWtmpcjXj8TVTrZt374dBYKfcnvTTTdBYwjKGFyRZs2awYmPHTsWjgjPimuvfNi5c6d0cvbZZ8sgM/9kW9++fSVRMpF839eOwC9evFiysX79euk2Ozt70qRJ0riysrJly5aSvYZ4E6sc9bgg8H51uBs0sKqqKvXINalrg8IRnR5NAT1EAhYUFMCw4f3qmtShB3i/euZLPU0Ph96zZw/cX5MmTYLswUuYKHXIFQYpdSvhKHUrUSh1K0OOT5dVPXLeKXVKPfKkisAhpR4BibEuKHVKPTYjMqNHqUe+Hyh1Sj3ypIrAIaUeAYmxLih1Sj0mIyw6GqDbqVOnmAi+6UCpa+fV5cejQtJ3BB7e2ep5CZ4yYO0O+MRYbe6a1C2ftd3y8nLNj8Thi5ygW9/3R4wYIT24TlxzDj1/28+rOz0cWmM2EpxSNxPUiVJK3aLLZDJoU+pDAy7MhsVdA3Qp9aT5p9St/DSZDNqUOqUeJIPa4AJepcb4AxfwBhlexj2aggt4c/dobUpdY8bEKXWTDUrdWmrVd7mANxOlnpcQLS7gLZJMJoM2F/BcwAfJoDZY1VVqjD+wqhtkNPIF/NatW0tT3tauXWt9B9d201TVW7ZsebvL5nRn24oVKyAf5i4P2vB2lz/96U8wOuhWA++55x7oBIIPP/yw5kfixcXF0Am8bnz69OnSg/bMU6eTbVVVVdJzaWlpVVUVzKWAc7PRu3dv6CQ8qP3aNUcJ2toC/sUXX4SUwqeSN8TtLpBB7U2swfTCNNL3zjY4eseO+P3qcIK+70PGtaru9MRYKHUtDDgXDVyzZo3mR+IZ8sRYJ6lH8sRYjb004ZrU5R6pRY7bnW0wIErdooVST6gT7SZWSt3KJUrd4f3qMO1Y1a2UYlWHeRI5yKrucQFvaQ92nTKPC3iLQyf20mRMqVPqVlrirlP+UeoWiU7spcmYUqfUrbTEXaf8o9QtEp3YS5MxpU6pW2mJu075R6lbJDqxlyZjSj0Cqe/evXsD2s4991y527TDcn/4wx+6oc3pvLp2BB5Ft2Hr1q1WRsbpQg9Tp06VE/Q8Lzs7G00FYx06dIBOIKg9RjIvLw/aSzCtR+DPP/98OEkZRhxk8eLFkG0JTpw4MY4f60+uUi8vL5cjwncca2mT4M5n7aoA6C5DTrbB2Hzfz8nJsej2PE+Ten5+vjTWENfz6lqEKeLz5s3TIkwTnuFSj2TWlZWVIfeL9nBoGIar1EPGEMeMUseX0FDqMEEtkFI3pUWpW+mRoJv6yTaTfbPNqp6Aevc/U+pmglHqbhlEqZvZ49TmAt4t1cJZcwEPkpC/1S1StMNylllUXUo9nHjdrCh1kJ+UukUKpZ5QVWk9Ap9w9DAGlLqV1ce6GSL1L7/8cg/afvSjH7UV20UXXYRs92i3W8DkuPLKK6GT3NxcMeAxABofOHBAcnrgwAFoDMGysjI4HATPPPNMOBcNbNOmjfRz1VVXyZh930/fyTY48UWLFsnY2rZte+KJJ2rTkfjJJ58MnXzwwQdyjjCM4uJi6VZDXI/Af/rpp3LQffv2ydg0pAkegdceDr1p0ybJQiTvbNN258KFC+WIvu9De3gTq/ZwaOghNzcXDgfB6upq6EQDd+3aBf1AMH1Sh+H169cPhjFgwABoD0Gnp9BAD06gq9R5Z5vDnW2UuqkHSt1SJqXu8MCpDFnAs6qbktbalDqlHpMbjfFqOUo9ZhcqHUqdUo9JDUrdSginLn+rJ6TL9Qg8dMjf6jGiVTo8LFcFsycSkFJPSCOlrgjThnlYjofl6tXEI/CWPngE3iQkyqpeUVExKeVt+fLlZnxBO/zDodetWwej2L17d+AtaLiebJswYQJ0DsH33nsvGMhsQOMJEyaME5s2XL2+jVYkUr/66qtheCK0Y0BxcbE5r6Cd+sm2l156CYZhTLe+2blzZxhely5d6o0StVI/An/JJZfAmM866yw5uHay7dVXX4VzgZ5LSkoCzhM2opR6wsFSMQgvdadRXKV+5MgRJ//hjUtKSmRClJWVQQ/S0vO8SKSuvXS5Xbt2ctD03e4CZ61dkiADSwJJXeq33347DLtbt24yHk3q48aNk8ae5+3fvx86Dw9S6m6/1Sl1MxEpdZMNSj389048S1Z1kx0zw4I2q3pARRINVnWHS2jMXIy8TamblMJUptQhLSFBSp1Sj0kVLuBNOriAN9ngAt6sRsm3WdVN7swMC9qs6gEVSTRY1VnVY9KGVd2kg1XdZKNpVvXTGnyDT2XOzgaX0JjVz2xfeumlMupWrVqZeytoFxYW7kdbmzZtpBMNWbJkiRlA/HbqJ9tatGgBI9HeY43mt//QoUMwzgMHDkj7tWvXwhHhjeLvvvuu9FBdXQ2H08BgB5mNPn36SM/79++/5pprTLP47RNPPBHOBYLQlcb/CSecIO2bNWsGPZ900knS2PO8Vq1aSfurr75aI0riSZ5sg9E0POgkdfgYSS3moqIiSZb20mXNiXZhLPScutS1MJxe+QBj08Dy8nJtUIlv2bJF8xMel249z4vkGnjoOcPBhni/eoZQQKmH2RGUehiWGqMNpY6LBKs65iUFlFX9+H5BUOo4eSl1zEsKKKVOqTcQA1zAhyGaC/gwLDVGG1Z1XKdY1TEvKaCs6sf3CyJKqRcWFnbP4G3w4MHhE/Xmm28OPxXtlrIrr7wyvJOVK1eGD2/JkiXS80svvQQ9SMs4yMaNG6GT1MH3338/zrjWn3bs2JH6iJbP2u4999wDPd97773QvsmA2pl8yEaCk23wMwTJABlodAxQ6o1ulzFgMpAMA5R6MqzxM2Sg0TFAqTe6XcaAyUAyDFDqybDGz5CBRscApd7odhkDJgPJMECpJ8MaP0MGGh0DlHqj22UMmAwkwwClngxr/AwZaHQMUOqNbpcxYDKQDAOUejKs8TNkoNExQKk3ul3GgMlAMgxQ6smwxs+QgUbHAKXe6HYZAyYDzgwcPXqUUndmjR8gA42LgcOHD+/bt8/7lBsZIANNlIG9e/fu27evurr68OHD3uFvtkNo+zLR9oX7dpAbGfgWM+CumC8SqfBLpN1Dtbo2//2f1A8fPgw/cOjQoYQjJRG9/Mi3eO9z6k2QAZnhSSAJpadp1lR40P5/E9MVj/cnSA8AAAAASUVORK5CYII=

补充内容 (2024-6-3 16:22):
获取更多电机设计方案,访问如下地址:
jsform2.com/web/formview/663909c775a03c2416365ebc
页: [1]
查看完整版本: 电机快速数字设计方案分享