the_covered 发表于 2021-8-10 09:14

map报错,出图不正常

请问各位大侠,Ansys 2020R1出map图时报如下错误是怎么回事啊

设置参数完全按照Roy_jxust版主介绍(只是版本不一样)和help文件设置,不知道为什么出不了图,各位大侠求解

不想玩motor 发表于 2021-8-10 12:08

我也有你这一步,但是我电脑都算不出来。你的是算出来没有map梯形图是吗

the_covered 发表于 2021-8-10 12:20

不想玩motor 发表于 2021-8-10 12:08
我也有你这一步,但是我电脑都算不出来。你的是算出来没有map梯形图是吗

对,算出来只有图2那样的线条(参数化扫描一样,没有云图),而且也没有效率、转矩-转速的云图,不知道哪有问题,你是哪个版本的

Roy_jxust 发表于 2021-8-10 14:46

报错信息是说在取回数据的时候产生错误了你把电流给为最大电流看看另外再看看有的曲线结果里面 看看转矩等曲线结果正常不

the_covered 发表于 2021-8-10 15:01

Roy_jxust 发表于 2021-8-10 14:46
报错信息是说在取回数据的时候产生错误了你把电流给为最大电流看看另外再看看有的曲线结果里面 看看转 ...

好的,我改一下再试试,不过前几次没有报错时,都没有效率云图、也没有转矩转速图,出不了图,不知道是为什么

scorpioor 发表于 2021-8-11 08:14

把数据清空了,重新关了软件再打开,重新跑一下,这个挂件很容易出错,莫名其妙

the_covered 发表于 2021-8-11 12:33

Roy_jxust 发表于 2021-8-10 14:46
报错信息是说在取回数据的时候产生错误了你把电流给为最大电流看看另外再看看有的曲线结果里面 看看转 ...

您好,现在云图能够出来了,转矩特别小,肯定是绕组的排序方向有问题(按理说这个绕组就是我那样排布的,我再试试逆时针);
还有就是云图只有很小一部分,后面大部分是空缺的。不知道是怎么回事

Roy_jxust 发表于 2021-8-11 13:34

the_covered 发表于 2021-8-11 12:33
您好,现在云图能够出来了,转矩特别小,肯定是绕组的排序方向有问题(按理说这个绕组就是我那样排布的, ...

云图只有一小部分 还是缺少了数据的 所以那部分绘制不出来建议你先用常规的电机类型 跑一个试试看效果 正好多熟悉熟悉 或者摸索摸索他的规律

the_covered 发表于 2021-8-11 13:42

Roy_jxust 发表于 2021-8-11 13:34
云图只有一小部分 还是缺少了数据的 所以那部分绘制不出来建议你先用常规的电机类型 跑一个试试看效果...

嗯嗯好的 非常感谢{:aa13

流浪的橄榄树 发表于 2021-11-5 16:36

我的也是一直算不出来,计算完类似楼主图二那样的一系列曲线后,软件还是在一直跑着,就是不出结果,一直在那转圈圈

Roy_jxust 发表于 2022-4-12 17:48

流浪的橄榄树 发表于 2021-11-5 16:36
我的也是一直算不出来,计算完类似楼主图二那样的一系列曲线后,软件还是在一直跑着,就是不出结果,一直在 ...

转圈圈代表软件还在进行后处理数据 这时需要用户耐心等待即可 如果没有卡死的情况下 等后处理数据处理完 软件会自动把Map图结果给绘制出来的

老人鱼海 发表于 2022-6-30 15:35

the_covered 发表于 2021-8-11 12:33
您好,现在云图能够出来了,转矩特别小,肯定是绕组的排序方向有问题(按理说这个绕组就是我那样排布的, ...

楼主你好,你只是把电流改大就出来效率图了吗,我跑了一个永磁电机,也是自动出来好多电流、磁链、扭矩那些图,最后出不来效率图,提示“Toolkit exit-incorrect input files to postprocessing”,加大过一次电流,结果还是一样出不来。

老人鱼海 发表于 2022-6-30 16:04

Roy_jxust 发表于 2021-8-10 14:46
报错信息是说在取回数据的时候产生错误了你把电流给为最大电流看看另外再看看有的曲线结果里面 看看转 ...

你好,我跟楼主情况类似。跑了一个永磁电机,也是自动出来好多电流、磁链、扭矩那些图,最后出不来效率图,提示“Toolkit exit-incorrect input files to postprocessing”,加大过一次电流,结果还是一样出不来。

Roy_jxust 发表于 2022-6-30 20:21

老人鱼海 发表于 2022-6-30 16:04
你好,我跟楼主情况类似。跑了一个永磁电机,也是自动出来好多电流、磁链、扭矩那些图,最后出不来效率图 ...

这个建议重点检查下相关ACT参数设置 出现这个报错一般是参数错了 比如极数 或者扫描点数等等

老人鱼海 发表于 2022-7-1 09:40

Roy_jxust 发表于 2022-6-30 20:21
这个建议重点检查下相关ACT参数设置 出现这个报错一般是参数错了 比如极数 或者扫描点数等等

**Y888kmbTeqciCQTQAhwJtP54UT4lZHv/6/T/h+dfic2dlVj9aOfXX/H7hXV1UQ+pjQ2kTx/aRYSMD2ZHBnL6s5RSmkSOBMHhDv18cxPfnXh**nfvDjMxfOzXzyEw37/uOm7VtrOUpBr9v3wnFxof7KlSsPHz785ptvSpNOL774orh47KqrrqpKr11YOuTGKqDaVsSW4mpTjGMF/15vFADsrnBcmuKKh8WgJhrslD3yI25rdtZ42AUAEHQqtIBgMBjNlJnKCVnlzZFkMtnQ0HCb/bZtV18NAKOjo0ePHj01OCjGxadPn47FYmJPo7a2ttnafNOOHVN5nY3JiYmf/vSnV65cIYRs2bLlS1/8EqSftdMzyQ1ryQ1NtbXVhFLKmTiOI8dPTf3TM0P/8K9nT5y40rSt5pZPLV+3qorKRtc4QsQFYISAicssC6gy0aaraz+xvTaZSBJCxOjl7b6Jvw1++JOfn58aS9yyY/lNLQ3VVYTdrci5469PDA//7D8CAIArTD/44IMvbxsRr9Lp06c7Ozv/5m/+5ty5c2JmqalUV1dLo20XL14UExc9SnvrFduKdksRR8bsvv0BPuN0LHxgv09sLH3STJ1YDrjCvemsFj6QaixKLUCWMZNTsX/ISDJ5/Seut9k+uXz5CgB4//33j7333sT4OCGEcNz4xET/wMCJ998X81511VV33XV3TU1NInvUeGZ29o03Dv3+978X/73//vuXLVsm3j0zs3TlcvKnD63ZuNZMk5RSynHEZDYNjyZ+/fKl2HvjlJDlK80NdZxqp4lmPpgIXHdN7d62dQA0maSEgMlETGbT0IXZ4L8NjV6aodVc49pqsy6DrukFOwAwOzt76tSpF1988eWXXz5z5oz4/ZEjR4aGhpLJ5ObNm83p5aTvvPOONFm5uMmPVQDA0myDnPtRs6WAxdOrPGArliQj3VKyC+LbxBbQlzv3bffty67R2rKQ0TeaTAIhtztu337ttRxHAODdo0eF48fFeF2cmPjg5MkjR46I+VevXr171y5LU9PUlSvycgjHDQ+P/PNPfyJ6u/Xr1tXV1YlNxcTB2QuJz9yy4m77qhUNRBzvogAAZGIyOTVNZ6eTFy5MXx5LyJegJClNJikAUAB5aDQzC2MTiYfuWL1n58pkIplMUCksGRlNJJIwM5n48MyVmaze3zyZnZ6Mx+PHjx+vqqq67rrr/nOav/iLv9iyZQshZHJy8vXXX5+ent66dev27dvFlT4HDhzo7++XHMu5c+cGBwfHx8d1MMhgKK8B49tcEAxGQz2CR7z7xTvc3qIa0csRBAHi8Z6B7lAomDNVKQzEQKkgPkBpQKGovMjI0mwDiIqNai4TKSLJZLKxsXH37t0bN24EgMnJyaOx2AenTsnzfPjhh+8cOfInn/tcbW1tVVVVk8Vy9z13p/obBKRZs9nZ2XBP+NS39l199dXyw6urqy6NkmQCvv7oxhma/M3vhocuzCYStLaa2Hcss1xXN/D+lTcOj14YniWpJfeUUqit4ZavMEM1qa03rV1ppgCiD5lJwtD5mZUrTf/1v2wl308efndi7EoSABrqubZ7Vy/fWB19/fLbR8enZzWXfrExPTZ86O1DAFBfX8/z/Pe//30xfWZm5sKFC6FQKJFIRCKRhx9+uLa29qGHHnr33XeHhobeeOONH//4x+fOndu8efOlS5fefPPN8fHxtra2Xbt2SStQFwcqa8By2kqqpbS3atydQsTf1ekNak9RxvuiAOpjA0WH0htuuKFx/fqxsbGxsbETJ07EYrGx0VEu3QAIIaOjo31Hj/b19YltgCOk5ROfmJqaOn/+/Pj4uDhFTQihAB99+GHomWe++uijWesIJ0ZpMnniw6kbttQ+cMeaFXXm4x9MTk/TjeurHrxn7fQ0/cnPh145fHk2STmOo5TW13Ab1lft+ER98zW154dna6rIZ25dcX5kZujc7NlLs0BgbGw2fmpq1VXVX364ceumy2fOTgNA07aaRz+3/vXfj/3P4OnTQ1Ogh/DKldELr732GgDU19dLY8QAwHHcnj17fvaznwHAa6+9Nj4+vmrVqoceekhcBjY5OfmTn/zkzTff3LJly+nTpwVB4Dhu+fLlVqu1statFERtZXGqrYgP78ItRYi4rc5g+j+73Q42W3tbW6t1YK8YxBsDwnFXrlwJRyKvv/46AAiCcOTIESLbWU44jiaTR48e/f9+8IPt114rJnIcJ45WTU1NxWIx8WFJCEkkkz/+p3+ampyU36bvHTs2Pj7xwqFkz6sj1VWw7apa+y0rqs1k+TLTB2em/vfPz0bfvjw8lpSeuHW1ZNvmmsZ11bG+8b5j4xRgajrZvL0+kZg8e2mWAIxNJkPhC6fPTq9czjVdU99iqTebYc0q8296R7rDF44MTCRBH4Gi6bHhoaGhxsbGLVu27Nq1S0oXm8qGDRtmZmamp6fPnDmzYcOGa6+99hvf+EZtbe0bb7wxNDR05MgRsde6cuXK7du319bWXpF1WauqqlatWtXY2LhmzRppX1DFobpfRZxeCXZHArx1IAbaLSXS5UwF63F5XA8gDCiVCrEBAfgyOBbOZHr94EH5AjZR5CcrD8cNfvjhP/7jP6oVIu3xAo7r6+v7zuOP59VifubfJ6enEpRSwnGrV1Ytq+cmryRHLs9Mz1COEweyAAAIIRcvJ185PPryocuJRHqmhYC5igMAjiOUwuUJ+qNnz01PzRIAzmxqXFtdXQUjo8nhkWkAMJl1U5Coql/x6KOPAsD69estlsyvQwhpaWn58z//c3FAnBAiBl8PPfRQU1PTc889F4vFhoaGxJ0t27Ztu/fee2+//fbVq1dLJWzcuJHn+aampk2bNl2bfgBVHKr7VSyt7XZvNBrsjuxrCUVBs9MkjWoFcu//VIcrU6paqBFxE2cQwBWmAeWRA73gOA5kfWjF+4xRwUS+rziH6WkqDhRQgEvDs5cuUQAgHDGZuZyCKQBNAhBiMsui/KRYPhAClNKZGRArSlL68dBUykgTp6/e3drtNz71n25U+/a73/1ufmJLS4u4oOHkyZMmk6mxsbFGSbJw69atX/nKV3QztEwozKukEIeMIdjdFYqC+uCXFoK/M5iTlBrryl1klmpsjOMGC4Fkw5hN7RC1PCZTqlvHETCZiamKM1VxnJI8HUk3ifw/qQpR106cchGLMhlMkOiaa67ZunWrYjtZNGiMUaTbSrBgS0mN4AadbmnRiSBE3A6lMIXf57MDQNDpSGcWIn5Hqv/WMaflwYiuKK77QyQU51VSyCZFtH2KxZOaagw6ranHqtXqDEbB7guLX8h+hnTmaDqz1ZmevS9y3wtRpqnlNgCAqNdKCNtuuiWJ5sh3qrfE0DGyeHrjYZddmh60212+cJz2enixuWVNZ1o8vTQ3dzjeiw2lTGz/y1d+5ZN+DXQuKpCOjg4AeOqpp8ptiT586qYbASCRTCZmE7OJ2ZR+T5Km10kuXTiO2/3p3bft3t3Q0LB69er169c3NjaK6hk1NTWVtSGxIP39/aKAjhqbN29+++232QtsampabIotbx9+68qVKyMjI5cuXRoaGrp48eLly5cnJydF9Z1yW1dmTCZTdXV1VVWVqFNsrJEBw7M4dcDENyLU1NTU1taKy5NMJhM2FbGp1NXVVVdXV1dXY2uZE4vNq4gLH8U3ItTW1tbX11NKzWazqDhabuvKDMdxogZ+fX19TU1NdXW1+H4VbC0sLDYdMPGHN5vNtbW1DQ0NouShKDqKTUV8iFRXV9fX1zc0NIghCrYTRhabVwEAk8lUVVVVV1cHAFVVVQ0NDbOzs8k8fe4lCCFEfA+R2DWtqakRg5Zy21UZLLZYRexjVFdXL1u2rNy2IIsKfKIgCBPqa8AQBJGBXgVBmNBaA4Ygi**FQRhAmMVBGECvQqCMIGxCoIwgV4FQZjAWAVBmECvgiBMYKyCIEygV0EQJjBWQRAm0KsgCBMYqyAIE2YAIIT09/eX2xIEMTTm+3euAwBt0SQEQTBWQRAmuAOHz5fbBgSpANCrIAgTnBirIAiiDXoVBGECYxUEYQK9CoIwgbEKgjCBXgVBmDAfOHz+/p3rRkdHy20JghialBL+ddddV147EKRkzG/FI8YqCMIExioIwgTOqyAIE+hVEIQJjFUQhAn0KgjCBMYqCMIEehUEYQJjFQRhAr0KgjCBsQqCMIFeBUGYwFgFQZhAr4IgTGCsgiBM6OlVIm6SjzuilFXwO9TzKJZDCCEOv8BUs3KdisdlsmY+R9xzKAJZKpjVYpX3jvW///5Jxa82bdq446Yblcuz++K9Hov0r+B3WAlxhWmAz0rzRl1h2sur5sktR4OImziDrjClvCyBxBiOj7idQQgH8j7zAUpZakaWFKpepdlqmZ6ZOfH+yZy/iclJ2w03sBZv8fSGXRDszLgDwb/XC764rF1YPL007Ao6VX2GJpHuILjC8lbGB+I+e9TbhX4B0RPVWMVkMt1z1x0bGtfLE1etXHH3nXdUVZnnUAO/T37jRrq8UVdH3vOe3+ezR0M9c28rwkAsP9Hi6aU5fiy3Eyf4HcQZBAg6Cbnlj2+RPjv8QlYHTPyc6eDJO2aybp/D73dnOoia3UukQtGKVZYtW3bXXXfU19eL/9bV1d533z2rV6+aYxWWZhtAbEAAEH2AvcWqnGk+bcXi6XBB0KlxPwp+h9ULvjillNK4D7xWh19IuTIAV5jSt37+lvRZqdcWdHa2xMWj7ZLzk/p9lFIatnm9QXl9ttQXlIZdmtYhFUOBeZW1a9Y4H7ivoaG+urr6rjvvaFy/XiOzGtYWO0T74ul/bc1KMUROpqjXyhjV8wHxFlYbI+jyRu2+/akWYPH0hl1z7ZxJh1ta21NGCv5Oeb+PD4Rd6dzxvii42iSXxgdolodDKpXCI2AbN2643W633/bpa6/ZVgKDUthTbkCOapxu8fSmskiNJt2sIt1BsLe3yg60ttgh2D2XtpJp25Zmm/ghpz0A8G0u2Sd0JIsQpnkVq7XJdkPLvOuI90Xlva5UX0w70zxJNZqwK+q1SjdrtoeyeqMLrEQlQkpTwM0hFUoJZuuFgZj0ZObbXPJuVnam7Kc/W9l+h9K9yLe5ZE1SwUMtsEckeRe17yU3F3bBfMf2EGNR/DVgYrCwL92r3+ezB515N3ekyxudR0sRoweV7pSt2aLRNhdGXi9Ozc/wgXBRDEBKTpG9iuB3OIOZqBoALJ79PntWX14ct3WFGaccs0mPgMkf3BE3cQbTrVNsm5mvI+6sAQJ5b1C5Z6hVbWZIOdOti7izBiBUx/yQCkPvNWA5I1dWry2cG45bPL007os5s/LkdomURsCUx8D4QCo2kXI5Y754plKLpzfuA+lrZ9CVtohvc0HUayUOv5D1mQk+II4Di4VCOOxK+7EADdsy1jhZ1g0gFQDZxT92/851Tz75ZLktqXAibuKEMA4LVwL9/f3XXXfd22+/zX5IU1MT7leZF7nDCRF3psuHLE7mskQFkbB4esN9xEnSU/SQWf2JLFJwv8p84QM6jj4jxgd3QSIIExirIAgT6FUQhAmMVRCECfQqCMKE+YFb57MFRZGdO3eyZDt8+LBeNSJIydB5XqVgM2BsTghiNLjn3zxXbhsQpAIwQKwi+B05W07yU0pZezYRd97XjOZJ2Yp6OqW8VksbPWOVisTi6S226FcJqkCKjwG8ijYFdIXy3FFmFX36H5nUUCq34Hc43G4HIcQdkT+V83OKdLvVt/6qWJLawhJ0ZlUh+B2iDFJ6R0FE9rlAgYpXQ1aL8rERN3H7U6elVAl6JGYMHqtE3E4IpwQmYrKdVM6YL56TCABgaW2HtEKS0BOC9lZLxG0NtcfziogGoSNn6ZZKToBgrEWpMk1LROE+cOUty496+9okmSXSLX1OicioF6h4NbJqUTk26BVPK2xL6w0oX1VEG8N7lfTeRIunN33XRbqDqc3FFk+HK2vfbqatpFoK8AFpl1fWjvgsvRUAANWckJL4y6tM0xI10kv1La3tdulzsy11mgULzL8ahY1J2c/v89mljZ4a5SDKcMaOVfhAvD1kzd8CKW16dAaz9/mm20q6pQBAprvhDEIBlHJqb6LSiC8AACAASURBVPdVtWS+aBSodjW0j5XstzTbxF3+BctBFDCAV8k8U2Vkft+0+EnY5t0r/awuSb0xVx5MbCsRqaVE3CTVzaFxn13LDrWckoiEotSEuiXzRLNA5avBaIwwEEtf1gLlIAoYIVbh27IEHwX/Xm/mPld46vFtrrRguEIGS2s7eJ3pEoSBWFZfS/3Br54z1ZcRekLRnG6btiXzQLPAAlWoHZu+tpGu1EXRx9QlhyF2QfIBGnYTQlL/Zl4YwQfC3cRKvAAA4ArT1INSlmz3xQO5T97Wdnu6pYDFs9/nsIpF210ue7QvDqDYoVLMaQEAcEE3IU7Rrpx+vZYlltZ2u9dJIByfg9qgVoGKV0OqhQZUjrW7oDNtf8CiVg5SCPL4448DwBNPPLHwsnANmPGIuElnC0rGZDM/GQo9vQq2AWQRY4RYBSkeshFwZGEYYAQMQSoBg8+rIIhRQK+CIExgrIIgTKBXQRAmMFZBECbQqyAIExirIAgThlgDtnQ4ePBguU1YWuzevVuvopb83vqSo+OPh2ij74MJYxUEYQJjFQRhAr0KgjCh67xK7hsSdRB0U1CsWygpCaMCGwFRig7JRn+vEjS4Wo7QE4q6wjpthNcHNf0xxEjoHqu4wmFQaCy5ynTsEnKKinV52nByFbysinNyShpz+fvWy3Wv5uiP4bZ3g1KEWIUPKDYWFQpIyIGSYp2yNpyCCl4mJw2D0+EXMhpzWU5FU6iuyES6gymhLlHASxKIQYxFUdaA8YEwdDI+HLUl5AAUFOvUtOHyVfBktyHf5oqmhSdzmYfynX7wAVnrjnQHtWXHkLJRpBEwfl97SCd9KcVbh02oLku4y9qipQKmu/LdPBD8DmfMt984MRQip1jzKhbP/vbQXr8OfQlFxTo2obosPdV4X1SjFt2V7+ZKxE2soXbUVjEuxZtXsXj2t4ec3tT9KetTCT0hrZs2jzzFOnahOnlOqZOlna0ccnKC30GcEDbSoBySRzH3q1g8+zOCpvw+H4idnL3Q7ppLMS7oJoQQa6g9nurU84GwTSyrUIdFlhPC6neidoGy5iN7K4VeEy+C32H12vIU8xGjoadkHlKQgwcP5iyXFPwOqzfLy+a/aAKZH/lXW2R+knm4BqzMSELbEthOjAmuAUMQJnBvPYIwgV4FQZgwP//mOXQspQT3DFcouLe+pOBu4coFYxUEYQJjFQRhAudVEIQJ9CoIwgTqgJUUHP4qMXpK5ulVEMIIDoKVDJ0l8zBWQRAWMFZBECZwXgVBmNDVq1SoZJ5kJMrkIeroH6tUsGSexdNblt0ikghZVkNV1ERDyobusUrFSeZJKe5IWbyK4Hc4ISwp5qXqz6TG20NWYz98lghFiFUqTDJPSinT7kOZK7O0tttTohvxvpTmhjwRKSdFGQGrNMk8o5ARpREGYpL+WfbVQMpFkeZVKk4yr9wIfgchVi+kHhbaomVIOSjWvEqlSeaVm5QaRUef1eEXjN6ulybFm1epIMk848C3ifLelmZb1iPC1mx0yxc/xZytrxTJPEtruz3ozB77Kq5Mnpys1i7Je1tb7KlGnnlEIGWF7OIfe+DW9SiZVxoURdxkqnl2X0a1OOImzmBOGjIX9JXMw5XF5cfi6aWe/GQ+QGmg9NYgKuAaMARhAlcWIwgT3PNvniOElNsMBDE6GKuUGtwzXKGY+V2N5bZhCYG7hSsXjFUQhAku8sbZctuAIBUAehUEYYLDWAVBWMARsJKCw18lRk/JvMgbZ9GxlBIcBCsZOkvm6VgWgixiMFZBECbQqyAIE7rOq1SoZB6CMKC/V6lgybzygtqWxkb3WKXiJPPEPG6/6Gty0/NFH4tDxE3SOyERY1KEWKXCJPNSlXhD7XFKadjmtWrWUgQibkKcMV/YhyotRqYoa8AqUTIvlY/f57OLVavVoj98gFLa61GQO0MMRJFGwCpOMk+u5SjJCrHVgiwNijWvUrGSeXIJVLZakKVB8eZVKksyL5oKjiJdXhCzsdeCLAmKuV+lUiTzAADsLujMKVCxltJJ6SEGg+ziH+N3NX7ve98rtyVlJOImnS0l0aVTE3EDEJXz+jrK9e6KxYjOknm4BswoWDy9tNw2IOrgfhUA4AMUH+VIAXBvPYIwgSuLEYQJjFVKDe4ZrlAwVikpuFu4csFYBUGYwFgFQZjAvfUIwgR6FQRhAnXASgoOf5UYPSXz9CoIYQQHwUqGzpJ56FIQhAWMVRCECZxXQRAmdPUqKJmHLF70j1VQMm/upFovtl8jo3usUomSefJsDr+gZm2xiLitfR2UiipkOuncILpThFil8iTzBL/DCeFy3ayR7mBawYwPGMrZIXKKMgJWYZJ5GS2YctyswkDM3jKg5E0RQ1GkeZVKk8xTrKRkpD0rjet21RDdKda8SoVJ5kmVlIW0NwVLs01TLRYpI8WbV6kcyTxLa7s93Y0Tg/gFWDtnstozYlyKOVtfMZJ5Fk9vGJxEVouytcXRy+PbbOlBDGEgpiWBiZQT8t3vfhcAlrZkXulQEXGLuIkzCADgCqNknn7oLJmnn2HIvOEDlAbKbQSiDa4BQxAmOAAghJTbDAQxOpzz0xvKbQOCVAAYq5Qa3DNcoZjDh4bQsZQM3C1cueAuSARhAmMVBGECvQqCMMGFDw2V2wYEqQBwBKyk4PBXidFTMg9jlRKDg2AlQ2fJPB3LQpBFDMYqCMIEehUEYULXeRWUzEMWL/p7FZTMmye5jxVFTTSkbOgeq1SmZJ4k7ygdn2VakTXzRDOtXtkm/ow0Wbw9ZDX2w2eJUIRYpfIk8yJua6g9LsoLyUqMekMt4rGSmEVRiLgJccZ8YZ9MfSnel5Ymk4tkIGWkKGvAKkwyT66Tl6Wfkj7W2mIvpvoRH6CU9nrkSmTCQEySJsu+Gki5KNIIWKVJ5mU6aqIcRLnRFC1DykKx5lUqSjIv4iaprh+N+zQbVKko0K6RMlC8eZXKkcwTBmJZnTcD9HYszbasR4St2WDDdUuQYu5XqRTJPItnvy8mKuaRvX02zbikOKp5+Vhb7KlGLhcfR8oIEcXyROE8pNioibgBAAh+h7WvIzOCl9bRs/vihpsDqgx0lszDvfVGweLppfL/UUfPWOAaMARhAvfWIwgT6FUQhAmMVUoN7hmuUHBvfUnB3cKVC8YqCMIExioIwgTurUcQJtCrIAgTGKsgCBPoVRCECT3nVXbu3MmS7fDhw7pUhyClROd5lYLNgLE5IYjRwFgFQZgoUawyODjI8/yBAwdUvpckiHQSEsrSTyqdmNaiEPjTf59a0dE2WacTKsUasMHBQZfL1dTUtGfPHqXvI27ihDClPIC4wcnhX+hmJmnvR0ogL1Cpuwgr3f7SkLvVpygU3atI7aSrq6uurk4hR/bWdounI61CFHETtz+lZSd/qubp5WUlOvyC9CDJCOS5v5SlhZcpTFEaz+ACfxkfLB0+v2ulKGbZ1Zf/G+XWKLtAgt8h1ZjZTs1Yr5rZczwpyRyFX1O6hqn/CCH558eCzrHKgQMHeJ4fHBwU/y3cTiClCefMXAqZKhcEvaKWXdjmtWro5WW0GGnY5t0rKyotkBd41JVSl4j3QY4cxRyk8Ywh8Jc+16wCWa9VgUTaAcFclZD8Gi2t7Xbxego9oWhaVUcYiIlSH+z1KpotQ+uk0lcp9yfK/jWlaxjg0yei8QNroLNX2bNnT1NTk8vlGhwcZGonAKL7pB19VrlbSJNSreP3+VI/jZJenlypQd7Q5PBttlCPABDpjuUJt7BL4xlB4A8kTRmLp1fe1piulWqiVPU+JX2n3Botre0Q6hEA4n3g84nFCD0h8SnEXq+i2VkonZT2VdL+Necvx6PzGrC6urquri6xtbC1kzR8ICXrFW8PWaXWIpdYlM5bSS9PUVgvC2sLhHoEpZaiJyUQ+OMD8faQNf+xwnyt8hOzqs5ST1OtMVVJpDtoa25tsQe7IxDvi0oiTGz1qpqtflJzkUFUu3RzOkZC/1hFai2s7SRn2Mji6XDlXzK5MqmSXl5hoVRLazv0dRW5pZRC4C/lhvN6mxKFrlV+YlbVWTejeo18myvY7R+Iudp4sTvm7w5mPCVbvapm55P+lv0qKWLx9M67A1aM4a+6urqnn3766aefZvMnba6sF01EuoPSJYumooBIlzcVYSjp5ckVsNVHBi2t7bEgW0sxssCfaiFs16pwYpc354RVauTbXEGvF1qs4mPI65VaCnu9imazn5T6VVKkwPUvgBF2QfIBGpYNTMh1r+wu6CTECWD3xQOWVO5wN7ESL8gSLZ5eqQS7L97Lg78zvx5La7u9j02mkd/n67RaiRfA7vO5QGFMSA0XdKcN7pUE/vIMVqk1k9MVpiruR5YpOxvjtVJLjA84xBN2uexsNVpb7JAOP5ptADbJp7DXq2i2DO2TUr9Kciyt7Xavk0CYpo48duxYwYPyIbv4x5yf3qCLZJ7ea8AibtLZoqNcnOB3dDX3Ls4pCr2vVYnQNrtYJzVPyTwdLTDyOkjB77B6wRfvLbchSKVCnnjiCQB4/PHHy20JgpSI+XkV3K+CIExwPQc/LrcNCFIBoFdBECa41t0by20DglQA6FUQhAmMVRCECfQqCMIExioIwoQR1oAtIfCNESVGx1cPmHsOfoyOpZTgeyNKhr4PJoxVEIQJjFUQhAn0KgjChK7zKoLfkSPXs2C1skUhQocsBvT3Klmbfw1ISoROY5N7yUk13nxZMMRA6B6ruMJhUGgsi0eETncibquodUXjvpiCsBViDIoQq/ABxcaiQoWJ0OmPpDOnJlaDGIOirAHjA2EoINMoUVkidEXA0mxLGyb4O4OFBc2Q8lCkETB+X3tIQaFqPhhNhE53+EBaWtMaaq88JYklQ7HmVSye/e2hvX4dbi+jidDpjeB3kE5RZZd29FkxsjcqxZtXsXj2t4ecafm1RSJCVwTifVHJML7NtQBRXaSoFHO/isWzP6MUze/zgdhr2gvtrrkU44LudO8kIInQ2cSynDHffq0eiywnhNXcTyZTTjZRry2rFlmzkr19YiHTR9YWuxRERbqDYGMT9UNKDdnFP9a6eyOKG+VRFL22gwcPKiyXjLiJMwgA2cqayEJRvtrzlszDNWDlhw9QGii3EUgBcL+KGnyALkrJVmSe4N56BGECVxYjCBMYq5Qa3DNcoWCsUlJwt3DlgrEKgjCBsQqCMIF76xGECfQqCMIExioIwgR6FQRhAmMVBGECvQqCMIGxCoIwgV4FQZjAWAVBmECvgiBMYKyCIEygV0EQJjBWQRAmdPQq6i9jEMWz9ReuzijI55UfcZdFVj7innulbKZmSi7TqS15VN8F+d6x/vffP6l4zKZNG3fcdKNaidFQj+DJEuiJdAcXaKUCETdxBu2+OO21SAlWEiqrOFDE7QxCeK7aK3yA0rmUzJIf0R9Vr9JstUzPzJx4/2TO38TkpO2GG1TLc7nyVLQj3UGXa04ieQUR/A5nMEfOng/EffaokowqguiAaqxiMpnuueuODY3r5YmrVq64+847qqo0thm35SrOR7qD9paW7EyZ15nI+xKC30Ec/kimV6XWZRN6QtG0ar4Mi6cjnCUhOZApSt5jUa5dFI5MvexFejuFYs60sfLvBL+DOIMAQSeR608qdQ9zKsruUGV3Kt0RyCs5twOWa4laOcjC0IpVli1bdtddd9TX14v/1tXV3nffPatXr9IuMeftDKJWcLMsQ8RN0q8zoXGfPZj19p2o1+m1iV+GXVHl15oIPaGosl4pz8ubT/r1KFm1FKg9JAptB3jNnILfYfWC+OIWSsOuoNPR09pLwy5ReLzXY8nJE/eB1yqrKasi2Zn5Hdb06acKJu64J6fkvCOyLfELyuVga1kYBeZV1q5Z43zgvoaG+urq6rvuvKNx/XqNzCmsLfbMGxbyVbUj3cGMR7C0ttsh630Mdl9GmTjuswcV3tMS74sqv0oiB3taaVhWS6HaM7Zq5Ix0eaP2jFgyH1C4h7PzWDy9YVdU9n4lZanxeF9U/pYYPpDXmHJQsWTO5SCFKTwCtnHjhtvtdvttn772mm1MRVpa2+3p9wMp6M/zAem+iriJ1Zujii/3FpZmG2i9P6gAmaIyb49gr109pzAQg0Iq3JHuYE5zsLbYIfPaJOXD+TYXzMUBqFky13IQBpjmVazWJtsNLQWzpcm0FcU3NWR60U4Ix33ZLwhi8RbWlhxfMBc0a9fXTul9SYQQkt8sleADYl9vDjGGoiXzKAcpQFFm69NtRfaaQwnBv9cbTb9JaH6dAktru135NSQRd4Hbg**AjlZmqo9HUJkYDhh6a1INOyCYOHXqKpZMtdykAIUZw2Y2Fb8PaFoXu8gpxud+y6trP5Wfi8mU7y8459C8HcGQWFkjL12tpyWZhsUemMQ3+aav+dLlxEIFyiExRKWchAGirQGzNJsg6DXG81/k2lWlz3idgYh+8fOzIxE3M5g+sWlucV7esOu7DdqC36HNSvEVaRQ7Ww5+X1ZMziC35HxZfI88md5xK0x+g2yTPJR5e6grH+lZKeKJZrlIPOjWGvA+DYXKL3zV3yVV7oT3dkSp2EXyCcOXb70G0ydQVdYvcfCB8SXZGdCAfDFNd4LyVY7Y06LpzeefgkZIVavTTSUb3NB1GsV79LsPCRvylTlpOTn5IylFx9klZxtppIlquUg84c88cQTAGCIt3alZwNwWBMpKvN7axfuV0EQJnC/CoIwYaT3q1g8vdRTbiMQRBn0KgjCBMYqCMIEehUEYQL31iMIE+hVEIQJc8/Bjx+8bZMuZe3cuZMl2+HDh3WpDkFKic5vGC7YDBibE4IYDU4vl4IgixsDxCqC35GzxyQ/xUCwGWfoU0DmA/fr18+U2wYEqQAM4FW0yegLKeoTKT25FQ6JuInbn9oALF/IrliOZqKjq69wjRG31RvN7G7PL1DFHuWTRQyBwWOViDutLxT3xZwZKVJnzBfPSdQ+JCN1FLZJkkmK5Wgn0g4I5u6czK+RD8R9dkhtt1GxNt8eNcsRQ2B4r5Le/Gfx9KY3smTELSyeDldGBUXjEABIb6jk9/nsYgbFctQS09sx+X1K0hXKNWpbm2ePdjlImTF4rMIH4ulNkSRb286a3lyYu5FW7RBpx6yl2SZtNFcsJy9RGIhlys8IJRWqUdvafHsKloOUEwN4FUuzLX/feOZGSguPhG3ybcWScqKCWp3yIRLCQEwqXbGcvMSs1pHVbthq1LRWbk+BcpByYoRYhW/LEl4U/Hu9IHZZIm6lxyvf5kqLTuZnUD4EANJVRLrSpSuWUzCxK1fPS7VGbWvz7ClQDlJunnzyySeffDJXr2pe3HLLLfPOE5ZJ5cv1s2Tp8mezlKygtaV0SNgFdpfLrl58wcS0Zp7d5bJnmaJSo5hf/De/QGV7VE4W0Zljx45RSt+aC8PDw2QX/9iDt236zne+s9A2Z+g1YBE36WwxkGqJ0exZWsxPhkLPNWC4DhJZxJgNEKuUAD5ADTX2ajR7kMIYYAQMQSoBg8+rIIhRQK+CIEwYYV4FQSoA9CoIwgTGKgjCBHoVBGECYxUEYUJnxRZEm4MHD5bbhFKwe/fucpugP+Zfv34GHUspWZS3kZzF+jjAWAVBmMBYBUGYQK+CIEzoOq+S9VZqKWVB0iMRt+46P4IoKoQ7DpE5ob9XCRpclkfoCUVdYaVN7uUm57kiKY9hmzYEuscqrnAYFBqL/DbIfBb8DoffL7slFG+PbneejFyeCJ3gdzjcbke+2FxOTknMLvsGnIPKXrEQ/Htlu/YFvyMlChZvD1mN/fBZIhQhVuEDio1Fhai3r41SSuM+8FpJt/Q5I0sRjLXkCM4pi9BFg9BBabZ+VkbqLgxOh1/IiNnJncocVPaKheDfG7K5Mgpj8b6oq40HALC0ttsVtM6QUlOUNWB8IAydjA9iu2+fdEdIn7PkjlLSchnBOTURutS9JUMuddfmioZ6VG1iVNkrEoJ/b6h9/76WTIJMgElR/AkpOUUaAeP3tYd0ErKSbhk5GpJ5MrIku6wtCqqQInNS2dMfsaFkhU7xvly1V6TcFGtexeLZ3x7a69fh9pLuUfmNry1CJxkhl7rTvPvmoLKnNwoNRbNdI2WiePMqFs/+9pAzHanKehFCT2hOj8xUD0voCaW675qSeVnIc0q9tjzmoLKnP0JPKJrykbIBB7kbEwZiYGs22nDd0qOY+1Usnv0ZKWx+nw/EO2IvtLu0DsvFBd2EEGINtcdTYQQfCNvEspwxX+4DOQtZTgiruZ9Mppxsdhd05tQia1aC3yH7ON/pH8mfiSp76QEHa4s91cgzjwikrOgpmbe4KIqq3cGDB9WXSwp+h7WvQxpWiLiJMwgAdl9laetpnqMhmKdkHq4BMwwWTy+V/csHKA2UzRgkF9yvogaq2iFZ4N56BGECVxYjCBMYq5SaxbpJcNGDsUpJMfjQEKIBxioIwgTGKgjCBO6tRxAm0KsgCBMYqyAIExwAEELKbQaCGB3zQ/bNepVl4DcMI8hC0XlepWAzYGxOCGI0uF9FPyq3DQhSAZRoBGxwcJDn+QMHDih8l78vaiFCewsW6dMHg5iB6AenY6yixuDgoMvlampq2rNnT7HrQpAiUXSvIrWTrq6uurq6OR+vIGYHCpJ5Unpqg3paIK+Asl46g9uf2v2rLO2nUaOikYXMUNPjUz5ZxBDoHKscOHCA5/nBwUHx34W2ExUxO2XJPADIKOIFeAW9PACQK+sJfke6nJaQV1MaQ71GRSOVzSikx6em3IcYAp29yp49e5qamlwu1+Dg4ILbiUi+mJ2aZF4Oanp5kqZDvC8qk+PTsqFgjcqKe9rHKunxaZSDlBmdY5W6urquri6xtejRTtTE7Bgk8wrq5WWJexUU3tKoUc1I7WPz9fgKloOUE/1jFam1sLYTRaHRzI2kKGbHIJlXUC8vSzKyoJyjZo0FFPe0rZU12QLlIOWkKPMqdXV1Tz/99NNPP83mT/g2V1Qm5y3496YV6pTF7Bgl8wrq5WUyCP7OoJimLO2nWeMcZPvkOfP0+AqUg5QZQ6ws5gM0DM704I811J4WvlIRs9OSzLO0tttTQ08F9fKkDNY+WzpWUZb206pR0UhlM+TH5unxqSr3IYaAPPXUUwDQ0dGx8LIqeQ1YUQTyDFMdksU8JfN0tMCQbQBB9MH8q+hHJZiwNzwlFshDPb7KwxCxCoIYn1KsAUOQRQB6FQRhAverIAgT6FUQhAmMVRCECfQqCMIExioIwgQq4ZeUJfLGiEUp+K+nDhjCwqK8jeQs1scBxioIwgTGKgjCBHoVBGFCz3mVlFiPnDJu61uIaJ0oMoR7EhEZenqV1MbwlK6P1r73CsAVLrXxuW07LQqW1WLZExGdKXasUmmideUi4iZWuRSZ4HekRMHi7aGUTtgcEhH9KW6sUmmideUh4ibEGfOFfTJ9pXhfNKVXZmltt6fUw9gTEf0p6hqwShStKwN8gFLa67HKkuQaZZKIDHsiUgSK6VUqT7TOMCjKkrEnIkWgmLFKJYrWGQTF5wZ7IlIEihqrVJponXGQP0SEgRjYmi1zSUSKQHH3q1SYaJ0SssYlpMbooARvGrK22NMPkZ5QOm5nT0T0pwgriy2eXir9wwcoDah+K88QcQdjmSye9Pee/JwKKH0nL0b52JZ9vaolykpO33wWT2+vylnojsXTG+4jVuIFsPvivfwcExH9QR0wFYJOEvOVVP9R9SEyv0REZ4yzX8VIonV47yF54N56BGECVxYjCBMYq5SaxbpJcNFjnFhlSbDodwsvYjBWQRAmMFZBECZwbz2CMIFeBUGYQB2wkrJEhr8W5egFjoCVmkV5G8lZrI8DjFUQhAmMVRCECZxXQRAmdPUqgt9BsrSHIm4VLSLVw1GcBzEouscqdjtIEhGR7ph9Dju/ldRWlhI5jwoUwjMWuscqNhukRYyEAbDJhCiEjFCrpGPnSG2sdxB3RHarCH6Hw++X3So5t42yrF6ho+TkSuxB2UX0BP9emRIaCuEZDv1jlbY2myiLIPT0tbS1pJMjbqsoUCeXtQvbvF0RiHR5beFcdxL19rWJmcFrJd3S5y7Nu4bxqHyJPZHyiegJ/r0hmyvjglEIz3AUYQTM2hLrjgAIPSFozigG8QFJVSgjesTv88WcxBnz7cvrd9lTaZbWdrv0uaAkHPtRyhJ7ZRLRE/x7Q+3797VkElAIz3AUYV7F0toOAwLE+2y56iHpXo8zKMtrBwXVoyKjJrFXHhE9saFk7eJHITzjUYx5FUszhHr83bEsFbqIm6Q6RDSeEeeNdHltLluBXlUxKCCxV0IRPYWGgkJ4RqQo8yp8m83rjWX5CmEgBnKNKlFv198Z8+0L7PPFOucWRivL6jGjKrFXBhE9oScUTcnEprT7HX4BhfAMSHFm660t9pxf1+LZ74s5xS7P3j6bPdoXF/x7vbYOjwUsng7FR7sGyrJ6zEcrSewBKIroFVsyT3Jv0otpej0WFMIzIGQX/9hD9s0dHR3ltqTsRNyks6XIyl8HDx5UXy4p+B3Wvg5plCHiFoM6e2nlyBaM5jkagv7+/uuuu+7tt99mP6SpqQlXFhuHHM08FCMzFrhfRaLEmn1IhWEmhJTbBgSpALhf9p4utw0IUgFgrFJqFusmwUWP+WHHVeW2YQlh8KEhRAPcBYkgTGCsgiBMoFdBECY4jFUQhAX0KgjCBMYqCMKEnvMqO3fuZMl2+PBhHStFkNKg87xKwWbA2JwQxGhgrIIgTBgkVsloDc1BYm+BLGR7lvaxpdP+m3tNRtAlNIINc8cIXiXiJmmtIVFtCEXiEONhgHmV7G33Fk+HK5oW3ct4m0LCdnl6fCD4HQ63W1KGzc0Qcae2skvyfeo+LVdfL/vYuZacY1jmOiiegqQBqCg82dWXezFzCs+pfb62ZXJK17zgsZqXVKFkhfMrnMh+WbDriQAABYBJREFU+IIxgFextLbbgzJPklEMi7idMV+cQdhOQY8PACAahA5KaYBXyMAHUlvZA7xqRSL5+nryY1lLpmHInGPGMFktyqfgDbWIh7uCaa2OTJkdEMzX4JAVnlf7/GzLSF1KAjcFj9W8pFkXN68cRUFDZZVDpVrU9BAXihFiFYunl9KOPmvec6s7mJIIs3g6XDKFxTxhO0U9PoCMs1LLUKCiNMr6emwlp4wFvk3mLfN1JVRPIXW4tcWe0nCRl7nPpyCCJBWuVvscbZMLYaTMLHhswUuqbYPiBc9PVKtF4/eaPwbwKiJ8IB2stIesmceUJKwSzCgsKgvb5evx5aCZQbGitGXK+noMJQsDscw/hbW9Cp5CXpkKrZO19jnZliOKxnSsxiXVLkfxgqv9Cvm1FP695ocBYpWIO6tLafF0uKQG4EpH+5TSfNkSSdhOWY8vuw7tDJoVaenraZacdSdrK0YWtFCxzKx7TTNnXu1zsA0gR2qT6Vjt306zHMULrvwrKNVSQA9xnhjAq/BtrqC8SxnpDooNgG+T+udZInd5wnaKenxyCmRQqwiUU+ZZstRZmEc5amV2ebVuce3amW2TC4ynxnkLHqt5SbVtUMyvXIhSLdq/10LYxT/W2dlJ9eCWW26Zb56wTPbOLoZ52elSYtgFdldKMj6TM/MgtrtcdnCFJQE69QypNDFPfkWKxrnCWeWl62EqOX1stmESBU4h66h03kyN8lLkCXm1z8s2lR9C+1j1S5qVM99CxQuunKhYi0rODMeOHaOUvjUXhoeHyS7+sYcdV33729+GBVOSNWClELZDFjfzlMzTMVbBdZDIIqbiFFtQ2A4pD0aYV0GQCsAAI2AIUgkYYF4FQSoB9CoIwgTGKgjCBHoVBGECYxUEYQK9CoIwgbEKgjCBXgVBmNBzDRhK5iGLGJ3XgKFkHrJYwVgFQZgwQKwiE/VhU6RJHeDo6NBJeU1Twq0Y+m6sZabPVMddfXlX2+EXMvZUpphdaTDIuyBTcjsAIO4yd4fVpTaEnlA0nb+zRPaVB/mZ6kl+mZ5eqnMdiw8DeJVc+EDcF+uUHqRqom8O/29lz0JtaTnlJ2We8Jz8mZr6nNGYe9KdpWSXL0YhPaMjCjnzJecKGpl9pgXU6LIuQcoIds0SZWfCqHm3VDBkrGJptqUlofI00STRt17PNbJDNKXlFKXTCgjPpchozD3e5kppQ8T7IEt3IVdRzpqbU0FyLt+MPCOzz1RLCC99CfraxJ3r4LWm1F/iPkhpdswZRs27pYMBvQrIJKEYlddARVpO49iCwnN58G22UI8AEOmOZbeUPEW5nJwKknNyM1hPsJAQnt23jwcQBVakz802BfGXoLNwXMhu2FLBmGvA5NJSDMprqqgfyy48l8HaAqEeIbelAOQpyuXnzM3AZqQic5ThU0KmY6IVBy3kyi9CDOlVsqSlGJTXVFE/ll14TnZMazv0dSm0lFxFufycuRnYjFS2Yi5SdwtiIVd+EWLAWCXidsp7GCzKa4poH6skPCfrrgg9ofyb0NLaHgvmtRQFRbnsnEoZ2IwseF6aUncLYiFXfnFiEK8i6z0TJ8jGMvlA2Cb2A5wx3/65Pdq0j81I23aCK62Wu88H4hF7oT0lvCYK9Yv3t6W13W5rzjXC4ukNg3gC1lB7PMDn5lTKwGZkofOCcNEe9wu58osS0tnZCQCVI5lXVgS/o6u5l2Wegz0nUnLmKZmnowUV3AYYEPwOqxd88V4dcyIVhPmXvacfuX1Luc2oACyeXurROSdSQRgkVkEQo8OhS0EQFtCrIAgT3HOvfVhuGxCkAkCvgiBMYKyCIEygV0EQJjBWQRAm0KsgCBMYqyAIE+hVEIQJjFUQhAn0KgjCxP8F2y7ANAzNqGIAAAAASUVORK5CYII=

我用的2021R1,设置界面稍有不同了,不是原来直接选maximum speed,DOE里定义转速扫描点数,MAP里再选使用速度步还是扭矩步,扭矩步里面才有一个最大转速选项。
极数设置就是正常极数,别写成极对数就行,扫描点这里还没有一个个参数去试过,这里有没有什么特别需要注意的地方呢。Hlep文件里相关内容好像不太详细,请问您手里有详细一点的说明性资料可以共享吗。
这个工具我才开始尝试,正常设计电机的时候都是按额定工况来设计电磁方案的,这里面,最大电流还是要由设计方案给定吧,根据我的电磁负荷给定最大电流配置变频,这里还想请教的是,软件能否自动考虑电流太大后的退磁影响。


老人鱼海 发表于 2022-7-1 09:45

Roy_jxust 发表于 2022-6-30 20:21
这个建议重点检查下相关ACT参数设置 出现这个报错一般是参数错了 比如极数 或者扫描点数等等

对了,拿来练手的case,map图已经出来的。但是,计算完以后,软件不响应时间挺长,能有十几分钟才处理好数据出来图,一度以为软件已经卡死。

老人鱼海 发表于 2022-7-1 09:52

老人鱼海 发表于 2022-7-1 09:45
对了,拿来练手的case,map图已经出来的。但是,计算完以后,软件不响应时间挺长,能有十几分钟才处理好 ...

我用的2021R1版,设置界面有点不一样,DOE里设置速度扫描点数,下年的Map设置里选择使用速度步还是扭矩步,扭矩步里才有一个最大转速设置。
我才刚探索这个工具的使用。极数别写成极对数就行。至于扫描点数设置,这里还有什么特殊需要注意的吗。Help文件里的说明不太详细,您手里有好一点的可共享的说明性文件吗。
最大电流实际还是要根据我们的电磁方案(电磁负荷)来给,对吧,这里还想请教的是,软件可以自己考虑大电流对永磁体的退磁吗

Roy_jxust 发表于 2022-8-31 22:36

老人鱼海 发表于 2022-7-1 09:52
我用的2021R1版,设置界面有点不一样,DOE里设置速度扫描点数,下年的Map设置里选择使用速度步还是扭矩步 ...

扫描点数根据需要合理设置即可 比如对转速比较敏感 可以多设置一些转速扫描点 如果对转速不是很关注 建议可以取消转速点的扫描 新版本是支持的 最新的2022R2版本还支持对于某些特定的转速点 电流点 或者电流角点 进行局部加密的功能 可以在脚本默认的扫描点基础上额外增加用户更加关注的变量

最大电流根据电机电磁方案评估 同时根据驱动器最大输出能力进行评估 可以考虑大电流对永磁体的退磁的 需要单独勾选 不过建议一般都是先做好电磁方案的评估 在设计初期应该将退磁的风险考虑进去
页: [1]
查看完整版本: map报错,出图不正常