wangbowen 发表于 2021-3-16 09:14

求助关于maxwell 2D静磁场施加激励源的问题

对永磁同步电机进行静磁场仿真时,需要施加电流激励源,想请问一下这个电流值应该输入多少?是对应RM或瞬态场的哪个值?(每线圈匝数为30,并联支路数为8,RM中得到的相电流为425.87A)

取啥名字呢? 发表于 2021-3-16 10:52

主要看你的初始位置,然后就能得到准确数值

wangbowen 发表于 2021-3-16 11:56

取啥名字呢? 发表于 2021-3-16 10:52
主要看你的初始位置,然后就能得到准确数值

静磁场有初始位置吗?

lizhen2979371 发表于 2021-3-19 14:43

施加电流瞬时值x匝数,具体瞬时值是多少跟你仿真的时刻有关

Roy_jxust 发表于 2021-3-19 15:25

wangbowen 发表于 2021-3-16 11:56
静磁场有初始位置吗?

静磁场没有初始位置静磁场的激励源找到瞬态场所对应的初始位置算出来的激励 加载到静磁场即可

wangbowen 发表于 2021-3-23 08:24

Roy_jxust 发表于 2021-3-19 15:25
静磁场没有初始位置静磁场的激励源找到瞬态场所对应的初始位置算出来的激励 加载到静磁场即可

好的,谢谢您,再问一下,这个激励源不是要加一个直流电源吗?那这个直流电流值对应的是瞬态场的电流幅值还是什么?还有,静磁场怎么看是否处于额定状态?是要看转矩吗?

wangbowen 发表于 2021-3-23 08:29

lizhen2979371 发表于 2021-3-19 14:43
施加电流瞬时值x匝数,具体瞬时值是多少跟你仿真的时刻有关

这个匝数是在电感矩阵里输入的Turns值吗?
**BCCCGEB**IIQQQgghhAQFqSCEEEIIIYQEBak**BCCCGEB**IIQQQgghhAQFqSCEEEIIIYQEpZKKZ599FgAAAAAAYC+QCgAAAAAACAKpAAAAAACAIJAKAAAAAAAIAqkAAAAAAIAgkAoAAAAAAAgCqQAAAAAAgCCQCgAAAAAACAKpAAAAAACAII7Ozu6qIwAAAAAAAKZAT4UFyTfa+wEAAAAApoFUNEg+/vGPQ6a89rWvVd8XAAAAADDO3lJxaJHCUttOyIO7d+8iFgAAAAB7spdUmCL8UDDbo20r5AFSAQAAALA/3lJxiAX4IW4T+IFUAAAAAOwPUlFyiNsEfiAVAAAAAPuDVJQc4jaBH0gFAAA**4gFSWHuE1b5/6Vo+Lo+FbxUBk3B0gFAAA**4gFSVTtunhrePi6KgsdG0WLHpdUmtPXB4Wt46X3R6kAgAAAGB/kIqSKdtUFfGtIneuwvd+caUUhCv3tXE7lmtPHiAVAAAAAPsTXyruX9nc1fPRbSrpFvElD28VxxMEwI99paJklvbkAVIBAAAAsD9RpaK+JedKcd8eXkrG8a2HrenGmVZYx2JomwxqEa+1synsbbHqbkc9nzu+3n/tefv23ZT2mOcS7pvl2tNPaqfQbmufyPSO79nWsXHtZyqaXpgr95195LzXBEdqj2/dP5+3NZ0DUgEAAACwPxGloi4Q/QVCo10cz03/Nu1Qi/iqoD4ubj1sXjcFbavdTdG92y/d/XT/lr3cads+pT1VYV4uq1NQT2rnbrrWsHK6W2a+ary1/Z1bsIa2dXg/qFLRmr6e3942IxwdOXGm00AqAAAAAPYnulSMFW8VTQFbFXuCVRy3r0TX1IVktwgV2sWn9dpdx0C7+rdpR7eId7dXb59Qb1NzVb1pV7801Mvxl4ru/q8Lavdq/sR2Wr0D7nQ19fhOO6vta0RjaFtH9oMqFa3tddvbt11j21GDVAAAAADsT9TbnyZdFR69ui1ohbVeNKpSIW2wl2cEo6ddQ9tkqAvYZtkNrbYMFcmtbW62V5bhFMk12rZ3GW1PibtvKqa2c6ToP9+nPdTzDW3r8H5QpcI5fi2p6G2vPq8LUgEAAACwP9Ef1G4Vu51Cri7wOoVfVRDaohEqFe7VefeqdpuxbRKq+ZXi95ypxboZZhflreV6SMVQe0qWkIqxdlb0bmv/OKQCAAAAYDtElwpDXdwLVjFtF5AKu4IwUCrcwlXQCvuGKds0XsTr7ROGhKZu19i2d9lbKia3s3+6mrHxCp1t7R/nLRW97amHIxUAAAAA83F0evoOdUQfUwrwHU0xOHo12aUuBNvT6UVjOlJhilyn3W4hXe6DK/Y2dNo1rVjfXyomtnNgOvNaHS/H2BTwQ9s6sh/8paKZxznG9bDuvC5IBQAAAMD+zNZTcU5VLE69+m3QpEIvLN3CuS4id4Vm33Q2U7ZpShFf0RTnO7oic17o9oy3l9G3r6a0Z2ibp7RTnU4t7K3xzvqGtnV03PmypknF+Xzny5T3kD6vC1IBAAAAsD+Rf/3JLUy7BZ0pQnuvblcM9ErYRaQpeK1C9ryotJfXTNeWlB392wTbB6kAAAAAmJvIPRW1DFRFfYN2pX3s6naFerW+KRDNfGWh2L6ivbvCff4H3xr6hEIY3ibYNCKsI8dfQCoAAAAA9mf+258WxpWMKaS+TTANkdW2xDaSO+H9gFQAAAAA7A9SUZL6NsF0zm9/M/Tc9vSZf/aR4gvvfmfxpVtvrPjNH35l8YHv+ovn**Q5Xz2Qx9U1wMAAACQA0hFSerbBOFUEvGOtxXP/eiriq9/6wuL4vn/9ix89bu/s/jy63+sWpesU2sLAAAAwKGBVJSkvk3gz2c++tuLSMQYX/uOb6t6M6Q9WjsBAAAADoGDk4p9OMRtypFPf/z3iy/eeWvx1cuX1AJ/bb784z+CXAAAAMBBglSUHOI25cZnn/o17x6Jr3zvy86fiwh5puIrf/l7iq+9+KK6Dg3kAgAAAA6NyVJx6EEqtkslFC96vlrA2xiJ+NyTv9xZhvn1p6B8uvyc/Po/Loq33iqKV3y32oYWP/lXyjfev2xmJoQQQghJO0O/lOklFVJ4HyLa9sI2kF9e6hMKuQ2qTyL60N4f+/IHv/Wbxaf+19PiK8d/Tm2f8PVv+lPFs295ozo/AAAAQCqM/fy+t1Ro4wCW5tO/+3R125FWqH/pZ/5acrcXifwM3SIlvxrFr0UBAABAqiAVcHAMPT8hPRPaPKkgctH7IPkLnld87gO/pM4HAAAAsCZIBRwUvc9PlAW5/PKTNk+KfP7B+3QxQiwAAAAgQZAKOBj6hGKrtw7JT+DKL0G52yPwC1EAAACQEkgFHARSYGtC8aU3/Yw6/ZaQW6Lc7aqg1wIAAAASYVQqzs7uqiNckApYjWeeqXoj3KI79ecnfEAsAAAAIGXoqYDNI7/m5BbbhyQUBpEH9ReiSrGQW7+0eQAAAACWAKmATSMPNLtF9nNXvl+d9lCQB85z22YAAABIG6QCNov2YLZcyZcHnLXpDwntdih6KwAAAGAtkArYJOovPcltQB/6oDr9ISK9E/b2P/ejr1KnAwAAAJgbpAI2R99Px27p71DE4HNP/nJ7H5RSJQ+ta9MCAAAAzAlSAZuiTygO8cHsKbh/IO/zf/fvqNMBAAAAzAlSAZtBfv0IoWjz5df/GPsCAAAAVgepgE0gf8TOLp5zLaLlAW3ZZvlX/uCf/D/n/QEAAABpgFRA0nz6d59W/7BdbgW03Pal/Y0KdxhSAQAAAGuAVECy9D0/IWT1UPYzz3SenejjK9/7skosDKZHQ10uAAAAQCSQCkiSPqGQ4jqnn40VtD/w58uXf/xHWqKRw9/yAAAAgOVAKiA5+oTiK3/5e7IshuUWMPm5WLMfRBC0W6G8KJf3xdNb6voAAAAAfElWKn7kR34EMuQnX/VDxbPftCugDU98x4vV6XPhTa/4vuJXXvKfF499z397PuxdL/8viz/8T/Tbw6byf33zNxY3f+AVrXUZtM8lwNpo71UAANgf7bt2H5KWipiRjSRpRT0mr/q+bvH71lvNSOLmF1/6X7T2lftMxaQejRc8r/q5XvfzZ78GSIVDPTfQDkLIGslKKmSZoZiNjLU8CEc7Jp96+51OwfvpN/50az7YIfvwf7p2tXVrlPa8ifkZWoP60LcjFkgFpMohnhtoBwCsRXZSoY33wf2i1KaBZXGPiTw34D5HIVfdtXmh5nwf/u7/WcmC29vQhzyXIs9l2Pu6whILpAJS5RDPDbQDANYCqfCEL8r0cI+JPITtFrj8FOow9j7Uxo8hPRitfd7sdxELpAJSBamYD86VAPmxqFScnd1VR7jE/hJCKg4b+5hotz194R1vU+eDHfY+1MZPoU8s5IFwbXqAtUEq5oNzJUB+LCoVOfdUvPGNb6zmkWjjYX/Oj8kfPVN87c/9h62iltuepmG/r7XxU9HE4rk/8+9Ovp0KYEkO8dywbztik0o7AGA5kApPUjlxwI7zY/Kmn24XtNz2NBn7fa2N96GvxyK3PzQI6YNUzEcq7QCA5UAqPNnni1JOGvZrif16CR7eOi6Ojo46XLmvT78l5Ji8+QdfWRWudiH7xTtvVaefSt8+MxzfeqjOt0Xs97U23uXKlSvqcIMmFl/7jm8rnn3mGXV6gDU4xHNDXzvuX1n2O2yf/QEA2wap8CSVE4cvVYF8fKt4qIybzv3iSnkiSk1E7t15vPj0C/79VgErP3UatYC9f6U8CR8Xtx4q4w4A+32tjbcRoTBo4w2aWHzpTT+jTguwBtlJhX0OeHirOJ5RLPbZHwCwbZAKT1I5cfhyyFLxz1/x33WK1+gPZyMVFbZQTBGLL7/+xzrH5rNP/Zo6LcDSZC0VZtiV++evY7LP/gCAbYNUeOLzRSknDPekYTDRxs3BsFQ8LG4d1yeX9i0/V4r7zTTarUDmCpc5Wd0305T/v6WcwOxpw+Rmh/xNiq9+w59sFa2zXA3vlYpatNyrfe52avvo4YT9XlOvw4yfQ+rs97U2XnBFwn2t8swzxf974U+3jo/8XQt1WoCFOcRzQ187ut+9u+8fd5r295SZ3g+f/QEAhwFS4UkqJw5fJklFeRLZFcdNIdu6iqX3VFQnIndatQiP39MhPRJ2wfrVP/9N89y3H0MqOvtzyn7vLv/+rf1P9H3Y72ttfJ9A9A23edvJf906Rl978UV1OoClyVoqqu+09gUM/XtqP3z2BwAcBkiFJ6mcOHzRehp2J5SmuHWko57HPukMSYV7db1eZqvYVk5iochff7YL1s/87OvV6YKJIhX6Phrc7819z3Pfcma/r7XxQ+IwJhWvvXat8xA9v8oFKZCdVJx/99eo31uRvqN99gcAHAZIhSdTvyj7ThguEm14bCb1VDhXp7ykQll2e52KZETAlYpPv/Gn1emCiSEVnX00Zb8300gR0Hv8wrHf19r4IWkQhsbL50/+Xoh9nD7/YNp3AcCcHOK5oa8d3e+g7kWNvu/yfZi6PwDgcEAqPEnlxOHLGlJRX2VvCnH7/+50Acj9+Xax+uxbpu13b1aTioamx2IuubDf19r4EOTz58rfcz/6KnVagCXJWypKnO81pAIAQkAqPEnlxOHLKlLRLFcK7uH1789XL19qFat/fP9/V6cLplcq9H0XXSoMVTvi3w5lv6+18SHI509+8ck+TnI7lDxkr00PsBRIBVIBAPFAKjwZ+6KUE8bUk4bBRBsXi5hSMXZVvoWctI6vFFfK5Ud/LuCZZ9qFasknfuej+rSh9EpFs/32fmoKf3uf7C0VD28VV+z9PdCOEOz3tTY+BPMl4wpg6B8nBAjlEM8Nfe3ofgc13z+j31P19/7ue2rsdc3Y/gCAwwOp8CSVE4cvdaFafvG7VCcCjyvmpmAuMXIxKBXmhNN35T2Az37og60itbj0LfOdvAaL+Wb/WfvU3Sd7S0VJNa9Z9gxCIdjva218COZLxv2lruovbDvTAixJdlJx/j3S4Hz3TPueGntdM7Y/AODwQCo8Gfqi9D1huEi04dtGP+HEQK5020Vq8T/+ICevPbHf19r4EM6/ZKRnyfkVqM89+cud6QGW4hDPDakU86m0AwCWA6nwJJUTx2aY6QFt4bkr398qUIt3/i1OXntiv6+18SHYXzLuX9jmgW1YE6RiPlJpBwAsB1LhydAXZYzYyzsEqu70GXophK+/6PmtArX45484ee2J/b7Wxodgf8nwwDakxCGeG1Ip5lNpBwAsx6JScXZ2Vx3hEvtLaKkTB+w4f4aj91mLMNzi9Avf+O9xTAKw39cf+chHoiHLdr9keGAbUuEQzw20AwDWYlGpyOFBbVgG93mK3zy+yDEJwH5fa3KwL7Js90uGB7YhFZCK+eBcCZAfSIUnfFGmgfvH1D7wXX+RYxKA/b7W5GBfZNmdLxke2IZEQCrmg3MlQH4gFZ7wRZkGSEVc7Pe1Jgf7IsvWvmTcB7blL6O70wDMDVIxH5wrAfIjK6mQBsbAfFFq42AZfvOHX9kqSo1UaNPCNMz7WpODfTGfP/cz+fkH72sdP3nOwp0GYG4O9dxAOwBgDbKRCmkYHA6VRFhFqbzWpgM/JJoc7Iv5/LmfSfnFJ/v4CXJblDsdwJxwbgAAiEc2UhEzspF/7598Dlbkoz/xc62C9PduvEadDqbzq7/6q9X7W5ODfTGfP/czKXz9W1/YOobyF9K16QDmYo5zQwoxn+W1k0o7CCHLJCupkGWGYjZSK8pgOZCK+CwtFe4fL+SnZWFp5jg3pBCkghCyRrKTCm28D0hFGiAV8VlaKtyH7XlYG5ZmjnNDCkEqCCFrBKnwBKlIA6QiPktLhfyMrH0Mv/bii+p0AHOBVMwbpIKQvIJUeIJUpAFSEZ+lpUL7exWf+ehv69MCzABSMW+QCkLyClLhCVKRBkhFfBaXipKvfO/LWsfxC+9+pzodwBwgFfMGqSAkryAVniAVaYBUxGcNqeg8V/H6H1OnA5iDFKTiietHxdH1J5pXcYJUEELWCFLhyZhU3LlxXBwdHRUXbjxSx9tU0548UMdNIXT+LTNFKm6elCfr8ljUHBdX77XHV5xes6aZdtwOlTWk4nMf+KXWceSP4MGSzC0VTz92qfX9UnHpseLpZrxkMal44nq7HZHXqWVIKsy+ufSYvTf0VNMGtHef+edv3xPFdft4TFyXyRL7r3pvnrfvUuHRvEXat8vTxWOXpI3Xy706LbO37+nHikvn+27H1MUstv/2/F7oax9S4cmwVDwqrl48Ki6flIXqxdvFHXWaknu3iwvmAO4jBaHzHwBjUiHCdfm0/bojFpVQWMOa/ZqrWKwhFZ/++O+3jqM8Y8EfwYOlWEQqWhLRFD/WsEWkoikczldjCp7I63XTLxX1frh+vWyXI1mt2IXZPm3de/752yfHvVWQNcdoShG5RPvkvWvPUheRU8VioePbxBS406VigfZV8/qJ2C7L7L9aGqeL2C797UMqPBmUiqpIvVbcbIpTu6g1VMVtIxzVlXRPKQid/1Dwvv2pc0xqAXT3n71/7eE5sIZUCPKrT/ax/OxTv6ZOBxCb5aWiTFMImBpgCamo1uG0oy7E9ikopqdXKqoCuly3sy/s2Ptun30UNP8C7dOiHSc1a7RvYF2dLNm+ah2lAF0vlzf1/bxE+8w6mpde2XD7kApPhqRiV+TrBatLqBQgFQFS0Sd+bu9FRqwlFe4fwfvCO96mTgcQm1WkojyNy20v5kRsCoJq2nK43xVXPW4xr7VDb1vc9EnFrgiqr3iOFURBRWcZ3/mXbp9JtZwJx2SV9g0UuG6Wa1+9fOndqT8/0z43i7QvoGhfon0yz7ResW6G2odUeNIrFU6Rqt5u44BU7I+fVCiSVx0v5fj0Dc+AtaTii6e3WseSh7VhKVaRiubKqjmfVyfo8tyxO8E399oHFPzdYr4++Z+f+502zBVVKpzitC4Gh9uyT9Fkx2v+FdpXpVnvaKG3SvumFbdVFmxfNV/zOanXM6GIX6h99XLL+SwmLWKR9pkLG81xNW2c8p0z0r5FpeLs7K46wkWyNamoJeJacdMMayRj6P58pGJ/xqWiEYnmw9I5Dn09En09GBmwllR8/sH7Wsfyq9/9nep0ALFZXioaYbAKALswMqlP1Pv3VnSL+e5DwWOFSoxoUtHZtqZIGSqm9y06TXzmX6N9Zh1Tirrl2tcuOEdlp8lS7XPX01lvT1Y5vmXq9Y6LxTLtM98H9ndAc7xH3oNj7VtUKg63p+JBcVkOUKvAN0WtJRoOSMX++N7+VEufJQuDUkFPRSzkMzP2JfOZf/aR1rH8+ouer04HEJtFpKI6ee9wiwOtIOicuD3TLuZNcWgvTxsWP71y09re8baEFnXT51++fefvkSlXiVfafxLTzuHFLNS+6taithRP+8yst/8k1XIGj/NC7esTlWZ4/6LG24dUeKJKRVWgyk7V6bvqjVTsj/czFSWt/dXXI8EzFaoc7It8ZqZ8ybh/WfvTv/u0Oh1ATBaRipFiUSsIokpFX6EwWkCEpyMVVTFYnxc1+toSWtRNnn/R9plizOMYrLT/TEaXs0j7dvutl/4V6dM3xGlff0a/DxZrXy0HnVnGvhMmtA+p8KQrFU2PhPqLQUPjkIoQgqWiOTbubVH8+tM6UiF/n8I+nvL3K7TpAGKCVAwUEBHSloqmGFT3x9C4fYqmdqbNv2z7qnm8jvF6+89keDnrtm/8M8P+26Vent5T0Xdb5LT2IRWedKRi7B78gSvfSMX+DEuF3I7Wvu2sc/uT4B6bjJ+nENaUiud+9FWt4/nFO29VpwOIyTakwr3lYOx1t4egWkerHcNFSqxMkhuT6iqoXtCEFnV987eGL9q+nivFTtZtX7tAr9+T7fWv175uNKlYs31PXG8vq25fe9iq+69anr2+7vfIPu1DKjxxpaIq7Aeem9Cft6hBKvZntKeiEQTTLdd3jIxsGHIVCmFNqeAXoGANtiEVjQCcTzP2WrntqIwpCs/prQ7ixW5HtZ2DV5K7RY3JXkWTFX3+er+Zq7WLtq8p0FrH4xxTOK7YPkmnje66V26fk65UrN2+5nOZ8v5zj3FrGfu1D6nwxJUKWIff/qnbrSL0j//Sf6VOB9NZUyo6vwB1+ZI6HUBM5paKtaJJxRpJpR16pAjSr/ymEdoXFtoXlv3ah1R4glSkwT+6/1utIlR48r1PqdPCNNaUCnkwu3U8X/C84tlnnlGnBYgFUjFvkpYKuV1j5tu/gkL7wkL7wrJn+5AKT5CKdPjE976yVYjKLVHadDCNNaVC+Pq3vrB1PD/71K+p0wHEAqmYN0lLBSEkepAKT+aViub5C41Mf5FoCPcWqI+/8ofV6WAaa0vFc1e+v3U8v/COt6nTAcQCqZg387VDbs1QzpNCEld/aV9YaF9Y1msfUuHJvFIBPnzonb/SKkK/+o3PK37xVz+pTgvjrC0VX3rTz7SO55duvVGdDiAWSMW8SaUdhJBlglR4glSkxRe/pX3LzFN/873qdDDO6lJRSoR9LJEKmBukYt4gFYTkFaTCE6QiLT527a+2ClFugdofpAJyA6mYN0gFIXklK6mQBsYAqU**oGKB1IBuTHHuSGFIBWEkDWSjVRIw2IiX5aQBl/+5v+4VYx+9G/8z+p0MI5Ek4N9MZ8/9zOpgVTA0nBuAACIRzZSETOykdqVXl**oGKg3whSDQ52Bfz+XM/kxpIBSzNHOeGFGI+y2snlXYQQpZJVlIhywzFbKRWlME6cAtUHJAKyI05zg0pBKkghKyRRaXi9PQd6ggXiXxJa+P2wT5xaON9QCrSxL0Fil+B8gepgNyY49yQQpAKQsgaWVQq+PUnmItPXGn/dW35a9vadNAPUgG5gVTMG6SCkLyCVHiCVKTJP/3f/narIBWefO9T6rSgg1RAbiAV8wapICSvIBWeIBVpIicv6Z2wi1J6K/xAKiA3kIp5g1QQkleQCk+QijSRk5f0TNhFqSAPcWvTQxekAnIjBal44vpRcXT9ieZVnCAVhJA1glR4MiYVd24cF0dHR8WFG4/U8TbVtCcP1HH9PCgul8uXdRimrOvQkZOX/Ov2Vvzhn/4TxfP+1X+l3E/HxdV7yryn19iXDUgF5MbcUvH0Y5da3y8Vlx4rnm7GSxaTiieut9sReZ1a3HZU22q3oeTSY/beaKfafwHtnDr/Mu16orjusQ7JUvurvZ5LxUizFj+O5RKKxy7Jeq6Xe7E/i7Tr6ceKS846hKHFLLq/PD7nc7QLqfBkWCoeFVcvHhWXT8pC9eLt4o46Tcm928UFcxA9peLmiVP4NkVx7mJhpELrrfijl728kT1HLKp9Zw1rjkuu+xKpgNxYRCpaEtEUR9aw6sS+bwHRk45UNIXG+WpMYRR5vW5UqbD3R9OOTiFjF277tNFz/iXaJetoLa85JkNF3BLtkveoPUv1nh0Ri8WOY5O6TbKcCVIxd7uqecfFy85S+6taz8g+sjNHu5AKTwaloipSrxU3m+L08ml3mqq4bYRDBMG/p6JLtZwhickAIxXC0695fas4FT766u92jkktgO7+t4+PPTwHkArIjeWlokxzgjbn5urEHlBwaRkt5svUhdr0AmSfTGmHu/32Pttn3+wz/xLt0qKt184q7XLen1oWbVfVnlJ8rpfL85WKMtHbVcmg3+cmp3YhFZ4MScVOEvSC1QWpiIctFfKH7z75nd/VKlCFH/o3/7WdVPSJn9t7kRFIBeTGKlJRnvblNhhzbjYn6mracviUK7JjcYt5rR162+JmXCqanpueQmVKETOUqfMv3S6T7nrbWaVde0nFXO2qlytXzuvPh69UzNCuKMV7/HbJPJ0ehpHM0S6kwpNeqXCKVPV2G4coUpH5LTsGWyqEf/iLv1M892ef3ypS//Ab/qNqeDVNtd+U49M3PAOQCsiNVaSiufJqzv/Vibr8Dt8VBM299+58HnGLeVMsnNcDThvmyqhUjBRoU4qYoUydf+l2VWmK96FCcPl2DReVJku1y17PXlIxQ7vqdpTzWYwtYv52mQsVzfEzbbPXqWSOdiEVnvRJRS0R14qbZtiEYj9YKpp15N5LIbhSIb1Fj1/411tFqiA9GNKT0dsj0exT7da1Q2dtqfjyj5efU+tYffH0ljodQCyWl4pGGKwTc+fEXmZKATWUrlR0HxKe8kBuaFSpcNoxWlR7Fn12ps6/dLuMUEwq+mZvV7sQHVq+yRLtcj8Dk6Vi5na5MZIxtJj522U+3/ZnujmuA++xOdqFVHiiS0Xzi0wtQWhugbJFwyFEKmqJKedHKCq6UlHz0Z/4uVahKvzeD10fkQp6KmIhn5mpXzJfvXypdZw+94FfUqcDiMUiUmGdsLWTtnaijisVpmi0l6cNix9VKlpFznDh419ctTN1/iXbdf6eGCj2TJbeX5LJRfKc7aqumLeld8pnYo39Jemut53Z29XX69UM71vUHO1CKjxRpaIqUMud3UPfVe/9pMLISp5X0/vokwrB/ZlZ4bd+7Pv0HgmeqVDlYF/kMzPpS+aZZzrH6NMf/319WoBILCIVA8WGRDtRR5WKvsJipOCIkXGpKKMUkCbexZWTqfMv066mYPPY50vvL5Ox5czbrt1+6qVnWWvtr7HP+fztMrc/NS9NvKWiTGC7kApPulLRFPlqj8HQuP2koppnoPcjV4ak4u//yh8Un3nxt7UK1q9+458q3v3Cf6Nzexq//rSOVHz2Qx9sHZ+vvfiiOh1ATJAKpEKyRLuqeTyP6RLt0jK2nDXaNeUzke/+qkVM76nQ1yGZo11IhScdqRi7B3/gyre/VNS3WdFD0aUtFbKf2uL1nlf/p8X/9x/8iVbhKvz8v/Nniuvv+WQ9XcbPUwhrSsUX77y1dVyeu/L96nQAMdmGVLjPYYy9Dr/tKFZC2zGliBlK3/zu8Pnb1XMl2ck67WoX6vV7r93W5dvVjSYVa7TrievtgrtuV3vYGu0qZ3KOW/d7YYl2IRWeuFIx3nOgPW9R4y0V5sFslTxv2TG0paKks6+uFe957Bdahavh1//Uv9X81e28hW1NqRCJsI+JSIY2HUBMtiEVzYn+fJqx191iXmKKxXNGioMYUaXCbsNIO6YUMUPR56/3l31Vd/Z2Nb1CnXVUmIJ0hXZJOm1zewNWapeTrlSs1a7m83a+joT2l3ssW8tYpl1IhSeuVEAadKSih6f+5nuLr37j81oFbFXEfssLiw+++0PqPLmwplR8/UXtn//97FO/pk4HEJO5pWKtaFKxRlJpRztyBbf/lpD1Qrv8Qrv8sky7FpWKs7O76ggXCVIBPkyVCuHJ9z5VfP4/++ZWESuIbIh0aPPkwFpSIQJhHwcRDG06gNggFfMmSamQ20RGeo9WCe3yC+3yy0LtWlQq6KmAufCRCkEe3v6jl728Vcwa/sWP31TnOXTWkgqep4C1QCrmTZJSQQiZLUiFJ/NKRfP8hQZ/j2IQX6kwPP2a17cKWoP8DG31R/KUeQ6VtaSC5ylgLZCKeRO/HXILh3J+FFa9Oky7/EK7/LKddiEVnswrFbAv+0qF0PecxbMv+fbiH/7i76jzHCJrSQXPU8BaIBXzJpV2EEKWCVLhCVKRJiFSIchD2vKwtl3cCjk9wL2GVPA8BawJUjFvkApC8gpS4QlSkSahUiFIr4T0TthFruH3fuj6wfdarCEVX/qZv9bazzxPAUuCVMwbpIKQvJKVVEgDY4BUpEcMqRDkOQp5nsIudG0OWS6WlopP/+7TRfGC9m1nX3jH29RpAeZgjnNDCkEqCCFrJBupkIbFRL4s4XD5l3/l1a1i1+UPf/C/L37jF96nzrtlJJoc7Iv5/LmfScHtpfj6t76wePaZZ9RpAeaAcwMAQDyykYqYkY3UrvTCesibWRsewv/xtg+of8/CRno1ZDpt/q0h+1CiycG+mM+f+5nUein41SdYmjnODSnEfJbXTirtIIQsk6ykQpYZitlIrSiD9ZhDKgz/9C3vGpWLz7z424qHb/r5Tf8M7ZJSQS8FpMAc54YUglQQQtZIdlKhjfcBqUiTOaXCMEUunvuzz6/+9sU/uv9b6jJSxhQA2vs+BPdLhl4KSIU5zg0pBKkghKwRpMITpCJNlpAKg8jFJ7/zu1pFsYYIyMeu/dXi1x/7hU30YCwlFfRSQCogFfMGqSAkryAVniAVabKkVBjk71fIr0HZBfIQ/8/JXyp+62cfKz70zl9Rl7c2S0hF9Xcp6KWAREAq5g1SQUheQSo8QSrSZA2pMPyDf/B/Fx/9iZ9T/3jeEPJXvP/oZS8vPv7KH67ml7/s/eR7n1LXsQRzS4UIhfvXs+mlgDVBKuYNUkFIXkEqPEEq0mRNqbCRW6PkF6FEGOzi2QcjGyIa8stSf/9X/kBdV2zmlApNKAT+LgWsSQpS8cT1o+Lo+hPNqzhBKgghawSp8GRMKu7cOC6Ojo6KCzceqeNtqmlPHqjjhrh5Up6EynXUHBdX7+nT5YQmFZP20+k1a5ppx20qIgTy0Lb8MpRbTPsiy5AeDXP7lNx6pa0zhLmk4k2v+D5VKL50643q9ABLMbdUPP3Ypdb3S8Wlx4qnm/GSxaTiievtdkRep5Z+qXiiuG63paSvOdU+DGir//xzt627/EuP2e+Iocy/36r34/nyLxWTm7bgMS2XUDx2SdZxvVzrlMzctqcfKy45yx9aRzsL7be9Pv/+bUMqPBmWikfF1YtHxeWTslC9eLu4o05Tcu92ccEcJE+pEBG5fNp+jVh0pWLSfqqEwhrWHJeYYmGQv8ItPzkrz2BIL4T8SpRbZO/Lsy/59mqZ0kMivRuCPBwu8uHz17/nkIrPfuiDxee/4U922oxQQAosIhUtiWiKIWvYIlLRFBTnqzFFUOT1utGkotondluaPHHdKWDtQm2fdu4x/xJtk+Pdkojm2IyJxRJtk3XYs9TrHBeLxY5pE7O+KVKxSNuqecf3k5ul9lstilMFrM6+bUMqPBmUiqpIvVbcbIpTu6g1VMVtIxzVlfQ9eipaDKwrJ1yp6NDZT7UAuvvfPj728DmQX4SSwl+epRARECnwfS5jKiIxIh7mtipbPAy/eXanKH79HxdfePc7q6I/hOd+9FXV8xJaW2S89tkCWJrlpaJMcxI2J+slpKJah9OOumjwKzR8o8vNePFl77d99s9e8y/UNi3a8WllrbY571U1S7etKeCvl8Xt6Pt3qbZV6/H8LB1o2xaVirOzu+oIF8kWpWInCXrB6oJUxMNbKvr2m9t7sQLSuyCiIbdOTfnp2i2BUEBKrCIV5eldbikwtYE5GVfTlsNrwop9t5jX2qG3LW7a7ah7aabf6lMnqAAtM23+ddpmUi2n91is2LZRqVi6bbv11Z+Xoc/Jgm3zLtyXa5vM47eesLYtKhUH3VPhFKlTbksKl4pp8pIDw1Kh7KfqeCnHp2/4ykhPwm//1O3qZ2mlt0FuedKK9pRBKCA1VpGK5kqrOWdXJ+Py3LE7iTf3MQcU/J0egqZQOK9HnDbMlVY7plz1VrJXkWdl0vwrta1Ks+7eIm61ttXvmcFlLNy2ar7mczEqFQu2rW5LOZ/F4CIWa5u5gNEcS9O+oe+WwLYhFZ70SUUtEdeKm2ZYIxlD9+fvJxVNgdy8Oea4/3+LdKViZD/19Uj09WAkjPwMrUiHPBhubm2Sh7pFPmI8JB7Kv/jzLyg+/3f/jvp5AliT5aWiEQbrjG0XSibjV2GH05WK7gOXU25vCE1XKvzXuU+RZ2fS/Cu1zRRw40XeUm1rF5+jV6sXbJv7mZgmFSsc0zJGMnoXs1jbzOfeXldzjPvec4FtQyo80aXiQXFZDlxLEExRa4mGQ4zbn2qZ4fanrlS06eynQalIr6ciFPP8hunxMPJh83s3XlMUb711/lxEKJ978perz0zMLxmAmCwiFdVJfYdbqGmFQlypMIWivTxtWPwgFf05f28MCYWE4lhmKNvRXs/oZ2TF/SapljNT4T451XoUOWyGq4sKbBtS4YkqFVWBWu7QHvoK/ijPVJTEWs6WGZMKobWf+nokEnimYi1MAaC970NAKiBVFpGKkaJRKxSiSkVfATFUWERKW27qq6ajV7+dhBZ50+Zfsm273oBps66z30yGl7NE29q9Jyrqstbdb8Of/aXaVq+nM8vgZz+sbUiFJ12paHok1F8MGhqHVMTEWyqaY+PeFrXkrz+lBlIBuYFULCkVzbZ6bldokTd1/qXatvd6Ft5vJmPLWattUz4j7LdayDqCUH32+3sjQtqGVHjSkYqxe/AHrnz7y4DcZtW+nYrbn2raUjFxP7nHZoPPU8QEqYDc2IZU1FcOd9OMve4p5lvtaK7+jrQtNG47ztfbKWhkuF7k+BdS7fTN3x2+RNt6rhw7Wa9t7UKyfh+227tO27rRpGKttrl/u6FuW3vYavutunXMPobd74uYbUMqPHGlohKDgecm9OctavbqYWgK36rLr2Jo3fnQloqSifvJyIYhZzlDKiA3tiEVzQn+fJqx11oxb5ZZf89VOOucI1o7JJ22dIqXXfYqpKzo89f7TLvFY9a2Nb1D7eUbzHpWapuk0z73avWKbXNSr89u35ptaz6D58tPbL+5x7W1jLhtQyo8caUC0qAjFeANUgG5MbdUrJW+Yn7ppNKObuRqbX+BtG5o236hbfslbtuQCk+QijRBKsJBKiA3kIp5k6xUyC0hM9/6tXdo236hbfslctuQCk+QijRBKsJBKiA3kIp5k6xUEEJmCVLhybxS0Tx/oZHpLxJNBakIB6mA3EAq5s087ZDbNZRzpLD61WDatl9o235Jr21IhSfzSgXsC1IRDlIBuYFUzJtU2kEIWSZIhSdIRZogFeEgFZAbSMW8QSoIyStIhSdIRZogFeEgFZAbSMW8QSoIyStZSYU0MAZIRXogFeEgFZAbc5wbUghSQQhZI9lIhTQsJvJlCXBoSLTPUAhIBaQK5wYAgHgsKhVnZ3fVES6SOXoqYkU2UrvSC+shb2ZtOExH9qFE+wyFgFRAqsQ+NxBCSM5ZVCpSeKYiFLORWlEG64FUhINUQG4gFYQQEi/ZSYU23gekIk2QinCQCsgNpIIQQuIFqfAEqUgTpCIcpAJyA6kghJB4QSo8QSrSBKkIB6mA3EAqCCEkXpAKT5CKNEEqwkEqIDeQCkIIiRekwhOkIk2QinCQCsgNpIIQQuIFqfBkTCru3Dgujo6Oigs3HqnjbappTx6o46bxqLh68ahc37Xipjo+HzSpuHki+8ZwXFy91x5fcXrNmmbacTtUkArIDaSCEELiBanwZFgq6iL/8klZqF68XdxRpym5d7u4YArZAKkwAoNUdKVC9s3l0/brjlhUQmENa45LrmKBVEBuIBWEEBIvSIUng1JRFallgd8Up3ZRa6iK20Y4qivp+0pFtY6ycD6RYhmp0HoqWnSOSdPL4+x/+/jYw3MAqYDcQCoIISRekApPhqRiJwl6weqyv1TUy5cr6vUVeKTCWyr6xM/tvcgIpAJyA6kghJB4QSo86ZUKp0hVb7dx2Fcqqvmaq+lIRc2wVCiS1/T0dI5P3/AMQCogN5AKQgiJF6TCkz6p6BT3jWQM3Z+/j1S460EqarpS0YhEeQzUB7D7eiT6ejAyAKmA3EAqCCEkXpAKT3SpeFBcluK1JQimqO0v+L2lQimEkYqa4Z4Ks58sWRiUCnoqYoJUQKogFYQQEi9IhSeqVFQF6u6quEvfVW8/qWhfeVfx7PU4JMakQmjt774eCZ6pUN/3ISAVkCpIBSGExAtS4UlXKppiX/3FoKFx+93+5EJPRY23VDTHxr0tqtqf/PpTVJAKSBWk**C4gWp8KQjFWP34A9c+UYq4tGWCrkdrb1POrc/Ce6xyfh5CgGpgNxAKgghJF6QCk9cqajEYLCo1563qEEq4tHpqWgEYXd7mL6PjGwYchUKAamA3EAqCCEkXhaVirOzu+oIF8lmeiogCTpSAd4gFZAbSAUhhMTLolJxuL/+BGuDVISDVEBuIBWEEBIvSIUnSEWaIBXhIBWQG0gFIYTEC1LhybxS0Tx/oZHpLxJNBakIB6mA3EAqCCEkXpAKT+ipSBOkIhykAnIDqSCEkHhBKjxBKtIEqQgHqYDcQCoIISRekApPkIo0QSrCQSogN5AKQgiJl6ykQhoYA6QiPZCKcJAKyA2k**C4iUbqZCGxUQKMIBDQ6J9hkJAKiBVkApCCImXbKQiZmQjtSu9sB5SEGvDYTpIBeQGUkEIIfGSlVTIMkPh9qc0QSrCQSogN5AKQgiJl+ykQhvvA1KRJkhFOEgF5AZSQQgh8YJUeIJUpAlSEQ5SAbmBVBBCSLwgFZ4gFWmCVISDVEBuIBWEEBIvSIUnSEWaIBXhIBWQG0gFIYTEC1LhCVKRJkhFOEgF5AZSQQgh8YJUeDImFXduHBdHR0fFhRuP1PE21bQnD9Rxvdy7XVwoly/rsLl8qkybEZpU3Dyx99FxcfVee3zF6TVrmmnH7VBBKiA3kApCCImXRaXi9PQd6ggXyTal4lFx9WJZ4J+UherF28UddZoSWwz2koqeAjljXKkQYbNFq5Y9Z79VQmENa45LrmKBVEBuIBWEEBIvi0rFwfdUVEXqteJmU5xqvQdVcdsIR3Ul3VcqzDq0cRmj9VS06ByTWgDd/W8fH3t4DiAVkBtIBSGExAtS4cmQVOwkQS9YXZCKeHhLRZ/4ub0XGYFUQG4gFYQQEi9IhSe9UuEUqertNg77SEW93HI+C61HJDeGpUKRvOp4Kcenb3gGHIpUkG1n6CQSG6SCEELiBanwpE8q6mLf6kFoJGPo/vy9eiocjGTkLhZdqWhEohGvznHo65Ho68HIgEOSCvmsw/YYO4nEBqkghJB4QSo80aXiQXFZiteWIJiitv9WpRhSIVTLyfQ5AMNwT4UiX4NSQU9FTNaSCm0cpA1SQQgh2w1S4YkqFVWBWl8R1+i76h1LKqqCGalQh9u09ndfjwTPVKjv+xCQCpgKUkEIIdsNUuFJVyqaHgm1qB8aF7mnIsJytoy3VDTHxr0tKmdBQypgbZAKQgjZbpAKTzpSMXYP/sCV731k4OZJe1n1bT15Xlm3aUuF3I7Wvu1MffbEPTYZP08hIBWwNkgFIYRsN0iFJ65UVGIw+BOv2vMWNfv1MLQfQObnZWs6PRWNIIztJyMbhlyFQkAqYG2QCkII2W6QCk9cqYA06EgFeINUwNogFYQQst0gFZ4gFWmCVISDVMDaIBWEELLdIBWeIBVpglSEg1TA2iAVhBCy3SAVnswrFc3zFxqZ/2TsGEhFOEgFrA1SQQgh2w1S4cm8UgH7glSEg1TA2iAVhBCy3SAVniAVaYJUhINU+CPfBy7adDAN2X9IBSGEbDNIhSdmI7WiDNYDqQgHqfDDCIQbxGJ/kApCCNluspIKaWAMkIr0QCrCQSqmI98D8q/EHTc0HIYx36/auDlAKgghJF4WlYqzs2lX8CSxpUIaFhMpwAAODYn2GQrh0KRiTChszLTyr8Ed3zfOjB8bZl6bZRjsaXwJnX9fZL3y/aqNmwOk**C4mVRqVi7pyJWZCO1K72wHlIQa8NhOkjFNOSLTqKNc5FpTYFux4xzh5thBm1d7jB5PWVZvpjlhi7HB1kXUkEIIdtMVlIhywzFbKRWlMF6IBXhIBXTkO8AiTvMxp1W4k4v/7rD7XHm/+407rC+dZhx7jAfJLIMgzZNTGQdSAUhhGwz2UmFNt4Hs5FaUQbrgVSEg1RMQ74DJO5wE3t837R9w91x2nTusKnL0sbZaNMYJFOmC0WWj1QQQsg2g1R4YjZSK8pgPZCKcJCKach3gEQbJ9jj+6YdWsbY/O6wqcvScKNNI8swmGjTxUDWgVQQQsg2g1R4YjZSK8pgPZCKcJCK6cj3gDZcMMW3+/++aYbGadO5w6YuyxeZ12BHmzYWsi6k**CthmkwhOzkVpRBuuBVISDVEzHFNt94yTu/120+c0wM4+8tqczr814bRp7uPxrTzsVe14Td5o5kPUiFYQQss0gFZ6YjdSKMlgPpCIcpMIPiXwfuJhx8q+8Nv/XGJpXm8a8tqcxr+3pBBknMdP5EjLvvki7kQpCCNlmkApPzEZqRZlw58ZxcXR0VFy48Ugdb1NNe/JAHTfK6bVqPefsu5wDQZOKmyfW/jk6Lq7ea4+vcPbjlON2qCAV+6HFHW+/dnEzNo15bcbJd5J57cZMsxWQCkII2W6QCk+GpeJRcfXiUXH5pCxUL94u7qjTlNy7XVwwheweMlAXy9eKm8q4XHGlQoTt8mn7dUcsKqGwhjXHJVexQCq2iS0VWwepIISQ7Qap8GRQKqoitSz2m+LULmoNVXHbCEclB75SYdahjcsYraeiReeY1ALo7n/7+NjDcwCp2CZIxf4gFYQQEi9IhSdDUrGTBL1gddlHKmSenG/R6cNbKvrEz+29yAikYpsgFfuDVBBCSLwgFZ70SoVTpKq32zj4S8WD4nK1jkZayv9XZHpl3WZYKhTJq46Xcnz6hmcAUrFdJNrwrYFUEELIdoNUeNInFbVEWLclNZIx1Kuwr1S0ZaUpmDMXi65UtMWrcxz6eiT6ejAyAKmAtUEqCCFku0EqPNGloin2W4Jgitr+5x+8paJPVDIuhA3DPRVG+qx9NCgV9FTEBKmAqSAVhBCy3SAVnqhSURWou6viLn3F/v63PznDkYpRqRBa+7tvn/FMhfq+DwGpgKkgFYQQst0gFZ50pWLo9qPhW5P8paJent5TkWchbPCWip59ya8/IRWwHkgFIYRsN4tKxdlZ/Vdex5BsRirGegkGrnz7S0VJ0yuyW59261V+tKVC9kn7trPO7U+Ce2wy7/FBKmBtkApCCNluFpWKQ+ypqMRg8O9G9Bf9e0mF0BS/57dYZS4UQqenwt1HPcfIyIYhV6EQDkkq5HMK2wSpIISQbQap8MRspFaUwXp0pAK8ORSpkM8nbBvtuM4BUkEIIfGCVHiCVKQJUhHOoUgFwFSQCkIIiRekwhOkIk2QinCQCsgNpIIQQuIFqfBkXqlonr/Q4K9mD4JUhINUQG4gFYQQEi9IhSf0VKQJUhEOUgG5gVQQQki8IBWeIBVpglSEg1RAbiAVhBASL0iFJ0hFmiAV4SAVkBtIBSGExEtWUiENjAFSkR5IRThIBeQGUkEIIfGSjVRIw2IiBRjAoSHRPkMhIBWQKkgFIYTESzZSETOykdqVXlgPKYi14TAdpAJyA6kghJB4yUoqZJmhcPtTmiAV4SAVkBtIBSGExEt2UqGN9wGpSBOkIhykAnIDqSCEkHhBKjxBKtIEqQgHqYDcQCoIISRekApPkIo0QSrCQSogN5AKQgiJF6TCE6QiTZCKcJAKyA2k**C4mVRqTg7u6uOcJEgFeADUhEOUgG5gVQQQki8LCoVOfRU3LlxXBwdHRUXbjxSx9tU0548UMdpmGX3cflUny8HNKm4eWLvn+Pi6**+IrTa9Y0047boYJUQG4gFYQQEi9IhSfDUvGouHqxLO5PykL14u3ijjpNyb3bxQVTyHpIRR9V8RxhOVvGlQoRMFuyaiFzxKISCmtYc1xyFQukAnIDqSCEkHhBKjwZlIqqSL1W3GyKU63noCpuG+GIIgPVunquwmeE1lPRonNMagF09799fOzhOYBUQG4gFYQQEi9IhSdDUrGTBL1gdQmXino9Od+yY/CWij7xc3svMgKpgNxAKgghJF6QCk96pcIpUtXbbRyCpcL0jGjjMmNYKhTJ6+vh6RueAUgF5AZSQQgh8YJUeNInFbVEWAV+IxlDvQhhUkEvhU1XKhqRKI+B+gB2X49EXw9GBiAVkBtIBSGExAtS4YkuFQ+Ky1K8tgTBFLX9PQlBUkEvRYvhngojfZYsDEoFPRUxQSogVZAKQgiJF6TCE1UqqgJ1d1Xcpe+q9/5SodzOkzljUiG09ndfj0SfbGQAUgG5gVQQQki8IBWedKWiKfDVXwwaGhcgFRnfotOHt1Q0x8a9LYpff9q+VJBtZ+gkEhuk**C4gWp8KQjFWMF/sCV732lovP8BjhSIbejtfdP5/YnwT02mcvaIUmFfNZhe4ydRGKDVBBCSLwgFZ64UlGJwWCBrz1vUbOvVFTzZXo1vY9OT0UjCLvb0PRjZGTDkHPvz6FJhTYO0gapIISQ7Qap8MSVCkiDjlSAN0gFrA1SQQgh2w1S4QlSkSZIRThIBawNUkEIIdsNUuEJUpEmSEU4SAWsDVJBCCHbDVLhybxS0Tx/ocEzFIMgFeEgFbA2SAUhhGw3SIUn80oF7AtSEQ5SAWuDVBBCyHaDVHiCVKQJUhEOUgFrg1QQQsh2s6hUnJ3dVUe4SJAK8AGpCAepgLVBKgghZLtZVCrW7qmQBsYAqUgPpCIcpALWxny/auPmAKkghJB4yUYqpGExkQIM4NCQaJ+hEJAKmApSQQgh2002UhEzspHalV5YDymIteEwHaQiPvKlqA0XhsblClJBCCHbTVZSIcsMxWykVpTBeiAV4SAV8ZHvC4nvuFxBKgghZLvJTiq08T4gFWmCVISDVMQHqfADqSCEkO0GqfAEqUgTpCIcpKIf+dxrw8cYEgd3nFmH/Gsw41zcadxp7eH2dPb4vnFm/Ngw89osw2BP44vMj1QQQsg2g1R4YjZSK8pgPZCKcJCKNqZIFuS1xJ1mDJm3bz53nLsu+7WNPY3ETCexp3Gnk2jzS8wwg7s8bZi8nrIsH2RepIIQQrYZpMITs5FaUQbrgVSEg1TUyGfcYEebdgyzjCnj7PUNTSP/2sPMcHuYtiwzXP51h9vjzP/daaauw4xzh01B5kMqCCFkm0EqPDEbqRVlsB5IRThIRf35FuwMTWfQphHMsqaM06adMo02fOp0feO06aauY2zcEDIfUkEIIdsMUuGJ2UitKBPu3Dgujo6Oigs3HqnjbappTx6o4wY5vVat45x9lnFgaFJx88TaR0fHxdV77fEVzr6cctwOFaSiRj7jBm28wY02jSxj6jht2inTaMOnTtc3Tptu6jrGxg0h8yEVhBCyzSAVnpiN1Iqyv/dPHhVXLx4Vl0/KQvXi7eKOOk3JvdvFBVPI+gpBUwRfPm1em2VlLhauVIiwne+j5nVHLKp9aQ1r9mWuYoFU7JDIZ92gTTMFmVcyZZw27ZRptOFTp+sbp003dR1j44aQ+ZAKQgjZZpAKT8xGakVZXaReK242xald1Bqq4rYRjupKuqcMVPM4wlIXzOV6rWG5ofVUtOgck1oA3f1vHx97eA4gFV1M5HOvjZ+CNq8ZJrGH2a+Hhrmv3em0+exxfcPMPGaZ9njBjNemsYfLv/a0U5F5kQpCCNlmkApPzEZqRdlOEvSC1WUfqdCK3pwLYYO3VPSJn9t7kRFIxTASbfgU5HvDRoa5y5PhU4aZ4fay3On65jPY8wsyzJ3eHS//2tOY1/Z0goyTmOl8kPmRCkII2WaQCk/MRnaKMqdIrXsPhovTfaTi/BarVnGcZxFsMywViuT17beM9ydSMS9u+qaZMswMN5HvJYk73n7t4mZsGvPajLPX6cZM4wtSQQgh2w1S4UmfVHRuQWokY+j+/P2k4kFxuVyu/XBxrlfWbbpS0YhEs486x6GvR8KRw5xAKraLJhVzM8c6kQpCCNlukApPdKloCv2WIJiitv9ZB3+p0JY5vp4cGO6pMNJnycKgVNBTEROkIi7yHaS9ltjD50bWG3udYyeR2CAVhBASL4tKxV//X/66OsJFsimpqApUKex1+q56e0tF31X0jK+uG8akQmjt7759xjMV6vs+BKQiPvI9ZJDXEneauZF1x16v+X7Vxs0BUkEIIfGyqFQcZk9F01OgPig9NA6piIm3VDTHxr0tKueH3pGKbWFHG78EsdeNVBBCyHaDVHjSkYqxgn7gyrf/7U/NPK2id1hccqEtFXI7Wvt2sM7tT4J7bDKXM6QC1gapIISQ7Qap8MSViqrIH3yeQXveomYfqRBMgXzOHss4NDo9FY0g7PaTfozcfZl7b49Ee9+HgFTAVJAKQgjZbpAKT1ypgDToSAV4g1TA2iAVhBCy3SAVniAVaYJUhINUwNogFYQQst0gFZ4gFWmCVISDVMDaIBWEELLdIBWezCsV2h+2a8j8QewxkIpwDkkq5HMK2wSpIISQbQap8MRspFaUwXogFeEcilTI5xO2jXZc5wCpIISQeEEqPEEq0gSpCOdQpAJgKkgFIYTEC1LhCVKRJkhFOEgF5AZSQQgh8ZKVVEgDY4BUpAdSEQ5SAbmBVBBCSLxkIxXSsJhIAQZwaEi0z1AISAWkClJBCCHxko1UxIxspHalF9ZDCmJtOEwHqYDcQCoIISRespIKWWYo3P6UJkhFOEgF5AZSQQgh8ZKdVGjjfUAq0gSpCAepgNxAKgghJF6QCk+QijRBKsJBKiA3kApCCIkXpMITpCJNkIpwkArIDaSCEELiZVGpODu7q45wkSAV4ANSEQ5SAbmBVBBCSLwsKhX0VMBcIBXhIBWQG0gFIYTEC1LhyZhU3LlxXBwdHRUXbjxSx9tU0548UMcNYdZhuHyqT5cTmlTcPNnto6Oj4+Lqvfb4itNr1jTTjtuhglRAbiAVhBASL0iFJ8NS8ai4erEs8k/KQvXi7eKOOk3JvdvFBVPIekpFXShfK26aYU1RnLtYuFIh4mXvk1rEHLGo9p01rDkuuYoFUgG5gVQQQki8IBWeDEpFVaSWBX9TnGqFflXcNsJRCYKXVDwoLivLrZYzJDEZoPVUtOgck1oA3f1vHx97eA4gFZAbSAUhhMQLUuHJkFTsJEEvWF28paIqjJXbeIzM2MMyw1sq+sTP7b3ICKQCcgOpIISQeEEqPOmVCqdIVW+3cdhPKrqFcL0upEIbXqNIXp+g9Q3PAKQCcgOpIISQeEEqPOmTik5h3wjA0P35/rc/NfMo60EqXKloRKLaN8px6OuR6BG3HEAqIDeQCkIIiRekwhNdKupnHdqCYIra/mJ/H6kQarEwlMvn9qeRngojfZYsDEoFPRUxQSogVZAKQgiJF6TCE1UqqgLVLvTb9F313lcqXHJ+uNgwJhVCa3/39UjwTIX6vg8BqYBUQSoIISRekApPulLR9EioRf3QuFhSUa8jx9t1bLylotlv7m1ROQsaUgG5gVQQQki8IBWedKRi7B78gSvf+0jFzRN7WcPSkhNtqZDb0dq3g3VufxLcY5Px8xQCUgG5gVQQQki8IBWeuFJRicHg8wza8xY1+/VUNMtryPkvQNt0eioaQTD7qe8YGdkw5Nzjg1RAbiAVhBASL0iFJ52eCkiCjlSAN0gF5AZSQQgh8YJUeIJUpAlSEQ5SAbmBVBBCSLwgFZ4gFWmCVISDVEBuIBWEEBIvSIUn80pF+3mJFjyMPQhSEQ5SAbmBVBBCSLwsKhVnZ3fVES4SeirAB6QiHKQCcgOpIISQeFlUKuipgLlAKsJBKiA3kApCCIkXpMITpCJNkIpwkArIDaSCEELiJSupkAbGAKlID6QiHKQCcgOpIISQeMlGKqRhMZECDODQkGifoRCQCkgVpIIQQuIlG6mIGdlI7UovrIcUxNpwmA5SAbmBVBBCSLxkJRWyzFC4/SlNkIpwkArIDaSCEELiJTup0Mb7gFSkCVIRDlIBuYFUEEJIvCAVniAVaYJUhINUQG4gFYQQEi9IhSdIRZogFeEgFZAbSAUhhMQLUuEJUpEmSEU4SAXkBlJBCCHxglR4glSkCVIRDlIBuYFUEEJIvCAVnoxJxZ0bx8XR0VFx4cYjdbxNNe3JA3XcFAbnP71WtcMwpT1bRpOKmye77T86Oi6u3muPr8hsPw2BVEBuIBWEEBIvSIUnw1LxqLh68ai4fFIWqhdvF3fUaUru3S4umEJ2H6kYm78qlK0iupn+kAtmVypEuC6ftl93xCLD/TQEUgG5gVQQQki8IBWeDEpFVaReK242xald1Bqq4rYRjupKuqdUjM9fi4073J7PHn4oaD0VLTrHJM/9NARSAbmBVBBCSLwgFZ4MScWuyNcLVpd9pMJGnb9PaNyr8geGt1Rkup+GQCogN5AKQgiJF6TCk16pcIpU9XYbh/mkQllv3/ADYVgqFMnLdD8NgVRAbiAVhBASL0iFJ31SUUvEteKmGdZIxtD9+bNIRd+V9qY9nSvzB0JXKhqRKLdZfQA70/00BFIBuYFUEEJIvCwqFWdnd9URLpJtScWD4rIUr60C3xS1lmg4LC8Vh3sFfrinwkifJQuZ7qchkArIDaSCEELiZVGpONieiqpAra+Ia/Rd9Z5FKvqutPcV0QfCmFQIrf2V6X4aAqmA3EAqCCEkXpAKT7pS0fRIqL8YNDRuJqlo1une7pP9rz+VtPdXnvtpCKQCcgOpIISQeEEqPOlIxdg9+ANXvueRihJ3nWNtPADaUiG3o7VvO+vc/iRkuJ+GQCogN5AKQgiJF6TCE1cqqsJ+4LkJ/XmLmtmkosQU0WO3YB0KnZ6KRhB2+0A/RrntpyGQCsgNpIIQQuIFqfCk01MBSdCRCvAGqYDcQCoIISRekApPkIo0QSrCQSogN5AKQgiJF6TCE6QiTZCKcJAKyA2k**C4gWp8GReqWiev9DI9BeJpoJUhINUQG4gFYQQEi9IhSf0VKQJUhEOUgG5gVQQQki8IBWeIBVpglSEg1RAbiAVhBASL0iFJ0hFmiAV4SAVkBtIBSGExEtWUiENjAFSkR5IRThIBeQGUkEIIfGSjVRIw2IiBRjAoSHRPkMhIBWQKkgFIYTESzZSETOykdqVXlgPKYi14TAdpAJyA6kghJB4yUoqZJmhcPtTmiAV4SAVkBtIBSGExEt2UqGN9wGpSBOkIhykAnIDqSCEkHhZVCrOzu6qI1wkSAX4gFSEg1RAbiAVhBASL4tKBT0VMBdIRThIBeQGUkEIIfGCVHiCVKQJUhEOUgG5gVQQQki8IBWeIBVpglSEg1RAbiAVhBASL0iFJ2NScefGcXF0dFRcuPFIHW9TTXvyQB03hSnzh65jK2hScfPkqDoWNcfF1Xvt8RWn16xpph23QwWpgNxAKgghJF6QCk+GpeJRcfXiUXH5pCxUL94u7qjTlNy7XVwwhew+Bf+U+UPXsTFcqRCZunzaft0Ri0oorGHNPstVLJAKyA2k**C4gWp8GRQKqoi9VpxsylO7aLWUBW3jXBUV9I9C/4p84euY4toPRUtOsekFkB339j7zh6eA0gF5AZSQQgh8YJUeDIkFbsCXi9YXUIL/inzIxUNrlT0iZ/be5ERSAXkBlJBCCHxglR40isVTpGq3m7jgFTEY1gqFMmrjpdyfPqGZwBSAbmBVBBCSLwgFZ70SUUtEdeKm2ZYIxlD9+cjFfHoSkUjEuUxUB/A7uuR6OvByACkAnIDqSCEkHhBKjzRpeJBcVmK11bxbopaSzQckIp4DPdUGOmzZGFQKuipiAlSAamCVBBCSLwgFZ6oUlEVqCIQOn1XvZGKeIxJhdDaF309EjxTob7vQ0AqIFWQCkIIiRekwpOuVDQ9EuovBg2NQypi4i0VzbFxb4vi15+QCsgHpIIQQuIFqfCkIxVj9+APXPlGKuLRlgq5Ha1921nn9ifBPTYZP08hIBWQG0gFIYTEC1LhiSsVVdE+8NyE/rxFDVIRj05PRSMIu9vQ9GNkZMOQq1AISAXkBlJBCCHxglR40umpgCToSAV4g1RAbiAVhBASL0iFJ0hFmiAV4SAVkBtIBSGExMuiUnF6+g51hIsEqQAfkIpwkArIDaSCEELiZVGpoKdijOb5C41Mf5FoKkhFOEgF5AZSQQgh8YJUeEJPRZogFeEgFZAbSAUhhMQLUuEJUpEmSEU4SAXkBlJBCCHxglR4glSkCVIRDlIBuYFUEEJIvGQlFdLAGCAV6YFUhINUQG4gFYQQEi/ZSIU0LCZSgAEcGhLtMxQCUgGpglQQQki8ZCMVMSMbqV3phfWQglgbDtNBKiA3kApCCImXrKRClhkKtz+lCVIRDlIBuYFUEEJIvGQnFdp4H5CKNEEqwkEqIDeQCkIIiRekwhOkIk2QinCQCsgNpIIQQuIFqfAEqUgTpCIcpAJyA6kghJB4QSo8QSrSBKkIB6mA3EAqCCEkXpAKT5CKNEEqwkEqIDeQCkIIiRekwpMxqbhz47g4OjoqLtx4pI63qaY9eaCOm0L//A+Ky2UbpB2GKe3ZMppU3Dyx98FxcfVee3zF6TVrmsPfT0MgFZAbSAUhhMQLUuHJsFQ8Kq5ePCoun5SF6sXbxR11mpJ7t4sLppDdRypG5pdiulUcN4XzIRfMrlSIcF0+bb/uiEW1X6xhzX7NVSyQCsgNpIIQQuIFqfBkUCqqIvVacbMpTu2i1lAVt41wVFfSPaVi3/mraYdEZ+NoPRUtOsekFkB3/9n71x6eA0gF5AZSQQgh8YJUeDIkFbsiXy9YXfaRChukYoe3VPSJn9t7kRFIBeQGUkEIIfGyqFScnd1VR7hINicVTpGq3m7jsJhUNG3L6fanNorkVftEOT59wzMAqYDcQCoIISReFpWKQ+6pqCXiWnHTDJtQyC8iFU07Dv2Wnq5UNCIh264dh74eiWZ/abeuHTpIBeQGUkEIIfGCVHiiS0Xza0utAt8UtZZoOMwtFbXolNNk8IzAcE/Fbl+cy8KgVNBTEROkAlIFqSCEkHhBKjxRpaIqUEUgdPques8nFbur9LlccR+TCqG1v/p6JHimQn3fh4BUQKogFYQQEi9IhSddqWgKeLU3YGjcfFJRDR/oITlEvKWiOTbubVH8+hNSAfmAVBBCSLwgFZ50pGLsHvyBK9/zSEV9K1YuPRSGtlTIPmhLVef2J8E9Nhk/TyEgFZAbSAUhhMQLUuGJKxXjvQLa8xY1s0hFUxjbt1/tONzbejo9FZ39oB+j8+dOGnIVCgGpgNxAKgghJF6QCk86PRWQBB2pAG+QCsgNpIIQQuIFqfAEqUgTpCIcpAJyA6kghJB4QSo8QSrSBKkIB6mA3EAqCCEkXpAKT+aViub5C41Mf5FoKkhFOEgF5AZSQQgh8YJUeEJPRZogFeEgFZAbSAUhhMQLUuEJUpEmSEU4SAXkBlJBCCHxglR4glSkCVIRDlIBuYFUEEJIvGQlFdLAGCAV6YFUhINUQG4gFYQQEi/ZSIU0LCZSgAEcGhLtMxQCUgGpglQQQki8ZCMVMSMbqV3phfWQglgbDtNBKiA3kApCCImXRaXi7OyuOsJFMtczFaFw+1OaIBXhIBWQG0gFIYTEy6JSwYPaMBdIRThIBeQGUkEIIfGCVHiCVKQJUhEOUgG5gVQQQki8IBWeIBVpglSEg1RAbiAVhBASL0iFJ0hFmiAV4SAVkBtIBSGExAtS4QlSkSZIRThIBeQGUkEIIfGCVHgyJhV3bhwXR0dHxYUbj9TxNtW0Jw/UcVMYmv/myVHVjprj4uq97jSHhCYVk/bB6TVrmmnH7VBBKiA3kApCCIkXpMKTYal4VFy9eFRcPikL1Yu3izvqNCX3bhcXTCG7j1SMzC+ycfm0/frQxcKVikn7oBIKa1izX3MVC6QCcgOpIISQeEEqPBmUiqpIvVbcbIpTu6g1VMVtIxzVlXRPqdhr/oH2HApaT0WLzj6oBdDdf/b+tYfnAFIBuYFUEEJIvCAVngxJxa7I1wtWl32kwgap2OEtFX37xO29yAikAnIDqSCEkHhBKjzplQqnSFVvt3FYRiqmCc7WGZYKZR9Ux0s5Pn3DMwCpgNxAKgghJF6QCk/6pKKWiGvFTTOskYyh+/Pnk4qmiC7Xn8vDx12pGNkHfT0SfT0YGYBUQG4gFYQQEi9IhSe6VDwoLkvx2irwTVFriYbDMj0VRnjyvv2psw8GpYKeipggFZAqSAUhhMQLUuGJKhVVgVpfEdfoK+aXkgohdF2pMyYVQmsf9PVI8EyF+r4PAamAVEEqCCEkXpAKT7pS0fRIqL8YNDQOqYiJt1Q0x8a9LYpff0IqIB+QCkIIiRekwpOOVIzdgz9w5XseqZBbsdq3XOV3+9PEfeAem4yfpxCQCsgNpIIQQuIFqfDElYqqsB94bkJ/3qJmHqkoaYrj3S1YQ+07DDo9FRP3gZENQ65CISAVkBtIBSGExAtS4UmnpwKSoCMV4A1SAbmBVBBCSLwsKhVnZ3fVES4SpAJ8QCrCQSogN5AKQgiJl0Wlgp4KmAukIhykAnIDqSCEkHhBKjyZVyqa5y80Mv1FoqkgFeEgFZAbSAUhhMQLUuEJPRVpglSEg1RAbiAVhBASL0iFJ0hFmiAV4SAVkBtIBSGExAtS4QlSkSZIRThIBeQGUkEIIfGSlVRIA2OAVKQHUhEOUgG5gVQQQki8ZCMV0rCYSAEGcGhItM9QCEgFpApSQQgh8ZKNVMSMbKR2pRfWQwpibThMB6mA3EAqCCEkXrKSCllmKNz+lCZIRThIBeQGUkEIIfGSnVRo431AKtIEqQgHqYDcQCoIISRekApPkIo0QSrCQSogN5AKQgiJF6TCE6QiTZCKcJAKyA2k**C4gWp8ASpSBOkIhykAnIDqSCEkHhBKjxBKtIEqQgHqYDcQCoIISRekApPxqTizo3j4ujoqLhw45E63qaa9uSBOm4K0+Z/VFy9eFS26VpxUx1/GGhScfNEtttwXFy91x5fcXrNmmbacTtUkArIDaSCEELiBanwZFgq6gL+8klZqF68XdxRpym5d7u4YArZfaTCY34jOblJhWz35dP2645YVEJhDWv2a65igVRAbiAVhBASL4tKxdnZXXWEi2STUlEVqWXx3hSndlFrqIrbRjiqK+meUuE1f9WOsrg+kYI6v56KFp1j0vTgOPvP3r/28BxAKiA3kApCCImXRaXi0HsqdkW+XrC67CMVNsPz122Qq+71VXqkoiUVfeLn9l5kBFIBuYFUEEJIvCAVnvRKhVOkqrfbOMwpFdW45oo7UqFIXtOL0zk+fcMzAKmA3EAqCCEkXpAKT/qkolO4N5IxdH/+XFLhtiVPqWhEojwG6gPYfT0SfT0YGYBUQG4gFYQQEi9IhSe6VDwoLkvx2irwTVHbX8zPIhVKsUxPhdkHliwMSgU9FTFBKiBVkApCCIkXpMITVSqqArW+Iq7Rd9U7vlS0r86rBKwvZcakQmjtr74eCZ6pUN/3ISAVkCpIBSGExAtS4UlXKppCXv3FoKFxM/VUKNBTUdPeX/WxcW+LqvYVv/4UFaQCUgWpIISQeEEqPOlIxdg9+ANXvpGKeLSlQm5Ha29v5/YnwT02GT9PISAVkBtIBSGExAtS4YkrFVVhP1iwa89b1CAV8ej0VDSCsLv1S99+IxuGXIVCQCogN5AKQgiJF6TCk05PBSRBRyrAG6QCcgOpIISQeEEqPEEq0gSpCAepgNxAKgghJF6QCk+QijRBKsJBKiA3kApCCIkXpMKTeaWief5CI9NfJJoKUhEOUgG5gVQQQki8IBWe0FORJkhFOEgF5AZSQQgh8YJUeIJUpAlSEQ5SAbmBVBBCSLwgFZ4gFWmCVISDVEBuIBWEEBIvWUmFNDAGSEV6IBXhIBWQG0gFIYTESzZSIQ2LiRRgAIeGRPsMhYBUQKogFYQQEi+LSsXp6TvUES6SOXoqYkU2UrvSC+shBbE2HKaDVEBuIBWEEBIvi0pFCs9UhMLtT2mCVISDVEBuIBWEEBIv2UmFNt4HpCJNkIpwkArIDaSCEELiBanwBKlIE6QiHKQCcgOpIISQeEEqPEEq0gSpCAepgNxAKgghJF6QCk+QijRBKsJBKiA3kApCCIkXpMITpCJNkIpwkArIDaSCEELiBanwZEwq7tw4Lo6OjooLNx6p422qaU8eqOOm0Dv/vdvFhbIN0g6by6fOdAeEJhU3T+ztPy6u3muPrzi9Zk0z7bgdKkgF5AZSQQgh8YJUeDIsFY+KqxfL4v2kLFQv3i7uqNOU2EX/PlIxNn81vqeIPlBcqRDhsiWqlj1nn1RCYQ1r9muuYoFUQG4gFYQQEi9IhSeDUlEVqdeKm01xqvUMVMVtIxzVlXRPqZg0v2mHO/yA0XoqWnSOSS2A7v6z9689PAeQCsgNpIIQQuIFqfBkSCp2Rb5esLrsIxU2SMUOb6noEz+39yIjkArIDaSCEELiBanwpFcqnCJVvd3GYS6pqNddjrPQek0OiWGpUCSvOl7K8ekbngFIBeTGXO/Nj3zkI5AJ2vEHyBWkwpM+qagLeat3oJGMofvzZ+upcDCScchi0ZWKRiQaqeoch74eib4ejAxAKiA3kAoIRTv+ALmCVHiiS8WD4rIUr60C3xS1/bchLSUVQjXtAT8rMNxToYjVoFTQUxETpAJSBamAULTjD5ArSIUnqlRUBaoIhE7fVe8lpaIqqjOWCqG1v/p6JHimQn3fh4BUQKogFRCKdvwBcgWp8KQrFU2PhFqwD41bVipC15U63lLRHBv3tqhDl68hkArIDaQCQtGOP0CuIBWedKRi7B78gSvfc0nFzZP2+upbfw776ntbKuR2tPZtZ+pzJe6xyfh5CgGpgNzweW9euXLlHG28jVZ8wmGiHX+ArePzfWezqFScnd1VR7hItiIVVWE/+POt2vMWNXNJhfuQcg4/L9vpqWgEYWwfGNkw5CoUwpBUjH2xDI1HKiBVpr43fU+wWvEJh4l2/AEOAd/vPWFRqTjkX3+CdelIBXgzJhV9XyxjXzpIBaTKlPemeX8PvcddtOITDhPt+AMcCr7ff0iFJ0hFmiAV4UyRCveLpW+4DVIBqTL23pzy/tbQik84TLTjD3BI+HwPIhWeIBVpglSEMyQVgvvF4r7uA6mAVBl6b059f2toxSccJtrxBzg0pn4fIhWezCsVzfMXGpn+ItFUkIpwxqRCsL9YpnzBCEgFpMrYe9PnfW6jFZ9wmGjHH+CQ8PkeRCo8oaciTZCKcKZIheDzBSMgFZAqU96bvu93QSs+4TDRjj/AoeD7/YdUeIJUpAlSEc5UqRB8CiykAlJl6nvT98SqFZ9wmGjHH+AQ8P3eE5AKT5CKNEEqwvGRCh+QCkgVn/emzwlWKz7hMNGOP8DW8fm+s8lKKqSBMUAq0gOpCAepgNyY672pFZ9wmGjHHyBXspEKaVhMpAADODQk2mcoBKQCUgWpgFC04w+QK9lIRczIRmpXemE9pCDWhsN0kArIDaQCQtGOP0CuZCUVssxQuP0pTZCKcJAKyA2kAkLRjj9ArmQnFdp4H5CKNEEqwkEqIDeQCghFO/4AuYJUeIJUpAlSEQ5SAfvyUz/1U5Aw2jEDAIhNNlIBAOuhfS7hcJDClaQZOTbaZxIAYA60c8Q+JCsVAAAwH0hFuqGnAgC2CFIBAJAhSEW6QSoAYIuMSsXZ2V11hIsEqQAA2AZIRbpBKgBgi9BTAQCQIUhFupFj88lPfrKDdhwBAFIBqQAAyJCpUvHhx19RvOH9n2he1THD5N9XPP7hZqjkw8XjryiHefF4OVecVO15w/uLdmu3Fzk2cj61QSoAIHWQCgCADBmSiqo4VwXgDYX4hS0an3j/G6xCXqSinsZksND/xPuLN3Sk4hPF+99QztOSlTrVusp2uJJjsrZUDLXPp21ybH7jN37jHKQCALYAUgEAkCExeiq6caTiw49bQtKmml+Rirak2Kll4/HHy2X2FOfdwr3uOVH8ZIaMta8e3ydEduTYvPvd765AKgBgKyAVAAAZ0icV5mq7L3WxbEmFEQqnwK6X34hERyoGJKBaXjltNY8+zapSMaF959M0L/six+Ytb3kLUgEAmwKpAADIkLGeiqr4l8pYKZJl3GBPxYctWTgvpJvbmuyi35UKmVa9yi+jynmrRvTfHmVLhSZHU3oJ6m0YL/zdTGmfGaeOsoJUAMAWQSoAADJkUCoakXCL8oqyaP+wEQ5J6+q71VNxnrq3wMzfKqgdqdgV5k4csamFwV1PM39wT8UeUjGxfZLebbSCVADAFkEqAAAypF8qjASYwlq5um71KEiRvOsBqKXi8cftXoJ2gV4V1c24x99vS0W9Hq03oS7SreU0Rbw77VpSMbV9VQZ6Y0yQCgDYIkgFAECG9EmFFOZ1sb8r/ltIhS5FsxTGVfFsF+C1VNi19LlEaIV0a/6+W4MayWmNaG4xcor/vaWikYDOtjYMzz+9fVVaPTt6kAoA2CJIBQBAhvT3VJQZLfabQrqkfTW+KxXnqYrpch676J8iFWa+HuzpV+mp8GhfFaQCAA4UpAIAIEPGpUIvkusr8s2VeFMxS6FcFfOWVLSW0SMailS0JaVZj9bLoYxbXir82lflfF/1B6kAgC2CVAAAZEhIT8X5Lys1xXH1uprAkgo7rqSYorq1nkYK2iuq5uuVguqq/259fVKhPtvQGw+p8GyfZLev+oNUAMAWQSoAADJk754KoSrcd70AUszXhXs9TJ2nF6uAd67iV5IwWOA362uK9K5UlKkK+3pdfnIxHt/2lTu2ErSxdiAVALBFkAoAgAyZ3lMxkHP5MNNKEd1zq5OWznp2onKQmbhfkQoA2CJIBQBAhgxKxYqpbg9yexsOJLseneEgFQCwRZAKAIAMSVUqSq2oH3A+sO4K9dasniAVALBFokqFLAwAANInXakgcmx+4Ad+oHjd615XvPnNby5+/ud/vnjXu96lHkcAgJQYlIqzs7vqCBdZCAAAbAOkIt3Isbl06VLx0pe+tHrA/NWvfnXxmte8Rj2OAACpoXmCMLmnAgAAtgNSkW7k2HD7EwAcGkgFAMABIoUrpAtSAQCHBlIBAJAJUrhKASuFrBS0UtjCeiAVAHBIIBUAAJngSgWsD1IBAIcCUgEAkAm2VEA6IBUAcAggFQAAmWCkAtIDqQCArYNUAABkghSukC7aMQMA2ApIBQAAAAAABIFUAAAAAABAEEgFAAAAAAAEgVQAAABAEpBt57Wvfa16XF3IttN3nJEKAAAASAKJ9utYkD537971kgptGZA+Q8cZqQAAAIAkMMWmNg7SZh+p0MZB2iAVAAAAkDwUm9sFqcgDpAIAAACSh2JzuyAVeYBUAAAAQPJQbG4XpCIPBqXi7OyuOgIAAABgSSg2twtSkQf0VAAAAEDyUGxuF6QiD5AKAAAASB6Kze2CVOQBUgEAAADJQ7G5XZCKPEAqAAAAIHkoNrcLUpEHSAUAAAAkz+aLzYe3iuOj4+LWQ2XcAA9vHRdHV+6r47bCoUlFdUyOjnRGj9X94or9PpD3xfGt4qEZX71PrhT3W9Pbr9MFqQAAAIDk2WqxeXzrYTlOCsP28Aq7mOyjKjLNcpTxG+AQeypc2TOv+4WjEYOHD4uH969Uw67ct+Y9H29LRfO+uVK+TzxldA2QCgAAAEierRSbFVI0GmHQeig6V6OFHvEYZPtXsF22cpz7pKLTEyHI8XYFshKL3fG7f6URR+u9IcvckkwiFQAAAJA8Wyk2hfMCcaIo1FeslWJ0CFVM0uRgpcI9lpVUPCxuHe96ISpEIBoBcWWkw4aOqwtSAQAAAMmzlWKzloN2UdgqJO1eDK0APUDy6qmwpbIeZ79+WEpDLZrNe6SSCEdOOmxfHpEKAAAASIKtFJv1bS27glCEYYpUVNNY801lC7fH5CYVds9EfYzdHqj6uFfHbrRnoiupqYJUAAAAQPJso9isi8VaGqYLw3BPxW45+vj0OVipcI+lEQlbFOT/7vMUNvRUAAAAACzHJopN00uhScVIT8VuOe6zFUhFigz2VJTILU9yzNxboWqsY0xPBQAAAMBybKHYvH+lLBRvGWnYUyo6V7brabpXr7dx65OQo1ScC6YmBG5PBlIBAAAAsAxbKTZ30rATBrla7QqBjS0VVXGqSEVLPDbGQUvFuTy4x1NkoHxti4Y7r7zm9icAAACA5dhKsekWmVfu18XluRQM9VRYBeauFwKpSI2WJDZyoInC8a371bFr9yjVx/N8GD0VAAAAAMuxhWKzoiUNTbFpF4W9UlHLR11sNle5nR6P1no2xCH2VLgYqaiPty0Sbo+FvLaemRmTilHpSAekAgAAAJJnm8WmIgSNVNxvik8jHNXV7/PCs8YUqIM486RINlJRHRP352OF+n1QHauqJ8uSBE0aqmmsY2xJasoMSsXp6TvUEQAAAABLstViE/KQCqCnAgAAADYAxeZ2QSryAKkAAACA5KHY3C5IRR4gFQAAAJA8FJvbBanIA6QCAAAAkodic7sgFXmAVAAAAEDyUGxuF6QiD5AKAAAASB6Kze2CVOQBUgEAAADJQ7G5XZCKPEAqAAAAIHkoNrcLUpEHSAUAAAAkj0SKFtgmPlKhzQ/bAKkAAACApJFiBbaNdlxdtPlgW2jHFakAAAAAAIAgkAoAAAAAAAgCqQAAAAAAgCCQCgAAAAAACAKpAAAAAACAIJAKAAAAAAAI4ujs7K46AgAAAAAAYAr0VAAAAAAAQBBIBQAAAAAABIFUAAAAAABAEJVUAAD48NKXXi3e8557q/LmN/+N4mUve3nxznf+7er12952VrzkJS+phrvTpsCLXve6c95V7kOb1/0PF8+59553BWOWpa3DnsYeb5D22W3Wp/lvyn/foyLjBHvb10Deo1rb4TD5yZ/92eJFL3pRcfwX/kLx1re/vRr2xtu3i5e+/OXF29797uq1DP/28jtChg+NM8sEAB/eV/z/Yq7fRia44kQAAAAASUVORK5CYII=

页: [1]
查看完整版本: 求助关于maxwell 2D静磁场施加激励源的问题