abcd515239632 发表于 2015-10-14 15:16

为什么用RMxprt设计三相异步电机,功率偏低

Y2-8012-0.75KW-220/380V-50HZ电机

RMxprt计算单
             Three-Phase Induction Machine Design

                      File: Setup1.res

   GENERAL DATA

Given Output Power (kW):        0.75
Rated Voltage (V):        380
Winding Connection:        Wye
Number of Poles:        2
Given Speed (rpm):        2850
Frequency (Hz):        50
Stray Loss (W):        5.025
Frictional Loss (W):        0
Windage Loss (W):        0
Operation Mode:        Motor
Type of Load:        Constant Power
Operating Temperature (C):        75

   STATOR DATA

Number of Stator Slots:        18
Outer Diameter of Stator (mm):        120
Inner Diameter of Stator (mm):        67
Type of Stator Slot:        2
Stator Slot       
            hs0 (mm):        0.5
            hs1 (mm):        1.355
            hs2 (mm):        5.145
            bs0 (mm):        2.5
            bs1 (mm):        7.2
            bs2 (mm):        9
Top Tooth Width (mm):        5.17994
Bottom Tooth Width (mm):        5.19413

Length of Stator Core (mm):        60
Stacking Factor of Stator Core:        0.95
Type of Steel:        D23_50
Number of lamination sectors        0
Press board thickness (mm):        0
Magnetic press board        No
Number of Parallel Branches:        1
Type of Coils:        10
Coil Pitch:        0
Number of Conductors per Slot:        109
Number of Wires per Conductor:        1
Wire Diameter (mm):        0.6
Wire Wrap Thickness (mm):        0.07

Wedge Thickness (mm):        2
Slot Liner Thickness (mm):        0.25
Layer Insulation (mm):        0
Slot Area (mm^2):        81.3049
Net Slot Area (mm^2):        59.2351

Slot Fill Factor (%):        82.6033
Limited Slot Fill Factor (%):        75
**** Warning - Result is Unfeasable ****
Slot Fill Factor is beyond its limited value.
Wire Resistivity (ohm.mm^2/m):        0.0217
Conductor Length Adjustment (mm):        15
End Length Correction Factor        1
End Leakage Reactance Correction Factor        1

   ROTOR DATA

Number of Rotor Slots:        16
Air Gap (mm):        0.3
Inner Diameter of Rotor (mm):        26
Type of Rotor Slot:        2
Rotor Slot       
            hs0 (mm):        0.5
            hs1 (mm):        1.587
            hs2 (mm):        9.71
            bs0 (mm):        1
            bs1 (mm):        6.5
            bs2 (mm):        2.8
Cast Rotor:        No
Half Slot:        No

Length of Rotor (mm):        60
Stacking Factor of Rotor Core:        0.95
Type of Steel:        D23_50
Skew Width:        1.125
End Length of Bar (mm):        0
Height of End Ring (mm):        13.5
Width of End Ring (mm):        12
Resistivity of Rotor Bar       
at 75 Centigrade (ohm.mm^2/m):        0.0263158
Resistivity of Rotor Ring       
at 75 Centigrade (ohm.mm^2/m):        0.0263158
Magnetic Shaft:        No

   MATERIAL CONSUMPTION

Armature Copper Density (kg/m^3):        8900
Rotor Bar Material Density (kg/m^3):        2689
Rotor Ring Material Density (kg/m^3):        2689
Armature Core Steel Density (kg/m^3):        7820
Rotor Core Steel Density (kg/m^3):        7820

Armature Copper Weight (kg):        1.12459
Rotor Bar Material Weight (kg):        0.141157
Rotor Ring Material Weight (kg):        0.142054
Armature Core Steel Weight (kg):        2.81734
Rotor Core Steel Weight (kg):        0.916867
Total Net Weight (kg):        5.14201

Armature Core Steel Consumption (kg):        5.17208
Rotor Core Steel Consumption (kg):        1.57152

   RATED-LOAD OPERATION

Stator Resistance (ohm):        11.433
Stator Resistance at 20C (ohm):        9.40453
Stator Leakage Reactance (ohm):        48.6687
Rotor Resistance (ohm):        3.95262
Rotor Resistance at 20C (ohm):        3.25135
Rotor Leakage Reactance (ohm):        6.44968
Resistance Corresponding to       
Iron-Core Loss (ohm):        3939.97
Magnetizing Reactance (ohm):        171.011

Stator Phase Current (A):        2.3536
Current Corresponding to       
Iron-Core Loss (A):        0.0321885
Magnetizing Current (A):        0.741601
Rotor Phase Current (A):        2.12418

Copper Loss of Stator Winding (W):        189.997
Copper Loss of Rotor Winding (W):        53.5044
Iron-Core Loss (W):        12.2466
Frictional and Windage Loss (W):        0
Stray Loss (W):        5.025
Total Loss (W):        260.773
Input Power (kW):        1.01072
Output Power (kW):        0.749942

Mechanical Shaft Torque (N.m):        2.55745
Efficiency (%):        74.1992
Power Factor:        0.649212
Rated Slip:        0.0665936
Rated Shaft Speed (rpm):        2800.22

   NO-LOAD OPERATION

No-Load Stator Resistance (ohm):        11.433
No-Load Stator Leakage Reactance (ohm):        49.029
No-Load Rotor Resistance (ohm):        3.95226
No-Load Rotor Leakage Reactance (ohm):        6.56048

No-Load Stator Phase Current (A):        0.99487
No-Load Iron-Core Loss (W):        21.9977
No-Load Input Power (W):        61.1488
No-Load Power Factor:        0.085711
No-Load Slip:        8.12911e-006
No-Load Shaft Speed (rpm):        2999.98

   BREAK-DOWN OPERATION

Break-Down Slip:        0.09
Break-Down Torque (N.m):        2.6469
Break-Down Torque Ratio:        1.03497
Break-Down Phase Current (A):        2.71132

   LOCKED-ROTOR OPERATION

Locked-Rotor Torque (N.m):        0.551601
Locked-Rotor Phase Current (A):        3.92618
Locked-Rotor Torque Ratio:        0.215684
Locked-Rotor Current Ratio:        1.66816

Locked-Rotor Stator Resistance (ohm):        11.433
Locked-Rotor Stator       
Leakage Reactance (ohm):        47.7156
Locked-Rotor Rotor Resistance (ohm):        4.03376
Locked-Rotor Rotor       
Leakage Reactance (ohm):        6.202

   DETAILED DATA AT RATED OPERATION

Stator Slot Leakage Reactance (ohm):        1.58089
Stator End-Winding Leakage       
Reactance (ohm):        6.05602
Stator Differential Leakage       
Reactance (ohm):        41.0313
Rotor Slot Leakage Reactance (ohm):        2.41147
Rotor End-Winding Leakage       
Reactance (ohm):        0.236442
Rotor Differential Leakage       
Reactance (ohm):        2.41419
Skewing Leakage Reactance (ohm):        1.38746

Stator Winding Factor:        0.959795

Stator-Teeth Flux Density (Tesla):        1.06595
Rotor-Teeth Flux Density (Tesla):        1.09456
Stator-Yoke Flux Density (Tesla):        0.978655
Rotor-Yoke Flux Density (Tesla):        2.16179
Air-Gap Flux Density (Tesla):        0.449187

Stator-Teeth Ampere Turns (A.T):        3.60817
Rotor-Teeth Ampere Turns (A.T):        5.71532
Stator-Yoke Ampere Turns (A.T):        20.7733
Rotor-Yoke Ampere Turns (A.T):        153.064
Air-Gap Ampere Turns (A.T):        134.444

Correction Factor for Magnetic       
Circuit Length of Stator Yoke:        0.7
Correction Factor for Magnetic       
Circuit Length of Rotor Yoke:        0.137729
Saturation Factor for Teeth:        1.06935
Saturation Factor for Teeth & Yoke:        2.36236
Induced-Voltage Factor:        0.578059

Stator Current Density (A/mm^2):        8.32417
Specific Electric Loading (A/mm):        21.9385
Stator Thermal Load (A^2/mm^3):        182.62

Rotor Bar Current Density (A/mm^2):        4.61463
Rotor Ring Current Density (A/mm^2):        3.95522

Half-Turn Length of       
Stator Winding (mm):        227.779

   WINDING ARRANGEMENT

Average coil pitch is:        7.66667

Angle per slot (elec. degrees):        20
Phase-A axis (elec. degrees):        90
First slot center (elec. degrees):        0


Sorry, the winding cannot be arranged symmetrically.

The winding factors of each phase are:
    Phase A        0.959795
    Phase B        0.333333
    Phase C        0.333333

The angles between two-phase winding axes are:
    Phase A & B        60
    Phase B & C        240
    Phase C & A        60

If a sinusoidal rotating field links the winding,
the fundamental induced-voltage components will be:
    Positive-sequence component        100%
    Negative-sequence component        22.6682%
    Zero-sequence component        100%


   TRANSIENT FEA INPUT DATA

For one phase of the Stator Winding:
Number of Turns:        327
Parallel Branches:        1
Terminal Resistance (ohm):        11.433
End Leakage Inductance (H):        0.0192769
For Rotor End Ring Between Two Bars of One Side:
Equivalent Ring Resistance (ohm):        1.65538e-006
Equivalent Ring Inductance (H):        5.29452e-009
2D Equivalent Value:
Equivalent Model Depth (mm):        60
Equivalent Stator Stacking Factor:        0.95
Equivalent Rotor Stacking Factor:        0.95
Estimated Rotor Inertial Moment (kg m^2):        0.000893137
帮忙看下哪里错了导致功率因数偏低

abcd515239632 发表于 2015-10-14 15:23

上科所软件计算单

abcd515239632 发表于 2015-10-14 15:27

Y2-8012-0.75KW-220/380V-50HZ用RMxprt设计工程文件 ,谁帮忙看下 哪里错了

思秦画意 发表于 2015-10-29 11:23

我用RMxprt也遇到问题,跟书上的案例对不上结果,而且误差很大。新手

cai4444 发表于 2015-10-30 13:22

额定输出都是750W
ANSOFT:输入1000W,效率75%
上科所 1.3058(倍输出标么值,也就是1.3058x750w=979W)效率76%
功率差不多吧
至于功率因数相差较大:ANSOFT 0.65 上科0.83.原因1 矽钢片明显不同,原因2ANSFT节距是第10型手动设计,自动设计是第11型,按同心式最大节距,而上科是7.76平均节距

xiangsuo 发表于 2018-12-7 13:11

请问你在RMxprt中怎么查看功率因数的,在Maxwell2D中能否查看,如果不能,那要怎样才能计算呢???谢谢

tztcl001 发表于 2018-12-15 09:08

主要是功率因数差别较大,计算方不一致

tztcl001 发表于 2018-12-15 09:09

我试了好多规格,特别是2极异步电机的性能计算差别最大

haiyucocolee 发表于 2019-8-16 06:52

这种小电机绕组连接方式要注意,rm里只有一种连接方式,确定两者是否一样,会有一点差别但不会有这么大

wangjs 发表于 2019-8-28 19:41

但ANSOFT计算的功率因数更准确一些,我曾和试验数据对照过

chiyanhu 发表于 2019-8-30 08:13

ansoft用的是哪个版本号呢,用新一点的版本如19.2是不是会不一样

benyulwj 发表于 2019-10-7 10:42

计算单,仅看功因差别大,没看启动转矩与启动电流,与上科所计算的差别更大。我也遇到同样的情况,不知道什么原因。

alanturing 发表于 2020-2-15 20:47

我用ansys2019R1和哈理工计算的结果比较过,rmxprt算出来的结果中,启动电流和启动转矩比哈理工的低,也比实际要低,电流都差不多

eelachan 发表于 2020-2-16 21:19

The winding factors of each phase are:
    Phase A      0.959795
    Phase B      0.333333-->?
    Phase C      0.333333-->?
页: [1]
查看完整版本: 为什么用RMxprt设计三相异步电机,功率偏低