为什么用RMxprt设计三相异步电机,功率偏低
Y2-8012-0.75KW-220/380V-50HZ电机RMxprt计算单
Three-Phase Induction Machine Design
File: Setup1.res
GENERAL DATA
Given Output Power (kW): 0.75
Rated Voltage (V): 380
Winding Connection: Wye
Number of Poles: 2
Given Speed (rpm): 2850
Frequency (Hz): 50
Stray Loss (W): 5.025
Frictional Loss (W): 0
Windage Loss (W): 0
Operation Mode: Motor
Type of Load: Constant Power
Operating Temperature (C): 75
STATOR DATA
Number of Stator Slots: 18
Outer Diameter of Stator (mm): 120
Inner Diameter of Stator (mm): 67
Type of Stator Slot: 2
Stator Slot
hs0 (mm): 0.5
hs1 (mm): 1.355
hs2 (mm): 5.145
bs0 (mm): 2.5
bs1 (mm): 7.2
bs2 (mm): 9
Top Tooth Width (mm): 5.17994
Bottom Tooth Width (mm): 5.19413
Length of Stator Core (mm): 60
Stacking Factor of Stator Core: 0.95
Type of Steel: D23_50
Number of lamination sectors 0
Press board thickness (mm): 0
Magnetic press board No
Number of Parallel Branches: 1
Type of Coils: 10
Coil Pitch: 0
Number of Conductors per Slot: 109
Number of Wires per Conductor: 1
Wire Diameter (mm): 0.6
Wire Wrap Thickness (mm): 0.07
Wedge Thickness (mm): 2
Slot Liner Thickness (mm): 0.25
Layer Insulation (mm): 0
Slot Area (mm^2): 81.3049
Net Slot Area (mm^2): 59.2351
Slot Fill Factor (%): 82.6033
Limited Slot Fill Factor (%): 75
**** Warning - Result is Unfeasable ****
Slot Fill Factor is beyond its limited value.
Wire Resistivity (ohm.mm^2/m): 0.0217
Conductor Length Adjustment (mm): 15
End Length Correction Factor 1
End Leakage Reactance Correction Factor 1
ROTOR DATA
Number of Rotor Slots: 16
Air Gap (mm): 0.3
Inner Diameter of Rotor (mm): 26
Type of Rotor Slot: 2
Rotor Slot
hs0 (mm): 0.5
hs1 (mm): 1.587
hs2 (mm): 9.71
bs0 (mm): 1
bs1 (mm): 6.5
bs2 (mm): 2.8
Cast Rotor: No
Half Slot: No
Length of Rotor (mm): 60
Stacking Factor of Rotor Core: 0.95
Type of Steel: D23_50
Skew Width: 1.125
End Length of Bar (mm): 0
Height of End Ring (mm): 13.5
Width of End Ring (mm): 12
Resistivity of Rotor Bar
at 75 Centigrade (ohm.mm^2/m): 0.0263158
Resistivity of Rotor Ring
at 75 Centigrade (ohm.mm^2/m): 0.0263158
Magnetic Shaft: No
MATERIAL CONSUMPTION
Armature Copper Density (kg/m^3): 8900
Rotor Bar Material Density (kg/m^3): 2689
Rotor Ring Material Density (kg/m^3): 2689
Armature Core Steel Density (kg/m^3): 7820
Rotor Core Steel Density (kg/m^3): 7820
Armature Copper Weight (kg): 1.12459
Rotor Bar Material Weight (kg): 0.141157
Rotor Ring Material Weight (kg): 0.142054
Armature Core Steel Weight (kg): 2.81734
Rotor Core Steel Weight (kg): 0.916867
Total Net Weight (kg): 5.14201
Armature Core Steel Consumption (kg): 5.17208
Rotor Core Steel Consumption (kg): 1.57152
RATED-LOAD OPERATION
Stator Resistance (ohm): 11.433
Stator Resistance at 20C (ohm): 9.40453
Stator Leakage Reactance (ohm): 48.6687
Rotor Resistance (ohm): 3.95262
Rotor Resistance at 20C (ohm): 3.25135
Rotor Leakage Reactance (ohm): 6.44968
Resistance Corresponding to
Iron-Core Loss (ohm): 3939.97
Magnetizing Reactance (ohm): 171.011
Stator Phase Current (A): 2.3536
Current Corresponding to
Iron-Core Loss (A): 0.0321885
Magnetizing Current (A): 0.741601
Rotor Phase Current (A): 2.12418
Copper Loss of Stator Winding (W): 189.997
Copper Loss of Rotor Winding (W): 53.5044
Iron-Core Loss (W): 12.2466
Frictional and Windage Loss (W): 0
Stray Loss (W): 5.025
Total Loss (W): 260.773
Input Power (kW): 1.01072
Output Power (kW): 0.749942
Mechanical Shaft Torque (N.m): 2.55745
Efficiency (%): 74.1992
Power Factor: 0.649212
Rated Slip: 0.0665936
Rated Shaft Speed (rpm): 2800.22
NO-LOAD OPERATION
No-Load Stator Resistance (ohm): 11.433
No-Load Stator Leakage Reactance (ohm): 49.029
No-Load Rotor Resistance (ohm): 3.95226
No-Load Rotor Leakage Reactance (ohm): 6.56048
No-Load Stator Phase Current (A): 0.99487
No-Load Iron-Core Loss (W): 21.9977
No-Load Input Power (W): 61.1488
No-Load Power Factor: 0.085711
No-Load Slip: 8.12911e-006
No-Load Shaft Speed (rpm): 2999.98
BREAK-DOWN OPERATION
Break-Down Slip: 0.09
Break-Down Torque (N.m): 2.6469
Break-Down Torque Ratio: 1.03497
Break-Down Phase Current (A): 2.71132
LOCKED-ROTOR OPERATION
Locked-Rotor Torque (N.m): 0.551601
Locked-Rotor Phase Current (A): 3.92618
Locked-Rotor Torque Ratio: 0.215684
Locked-Rotor Current Ratio: 1.66816
Locked-Rotor Stator Resistance (ohm): 11.433
Locked-Rotor Stator
Leakage Reactance (ohm): 47.7156
Locked-Rotor Rotor Resistance (ohm): 4.03376
Locked-Rotor Rotor
Leakage Reactance (ohm): 6.202
DETAILED DATA AT RATED OPERATION
Stator Slot Leakage Reactance (ohm): 1.58089
Stator End-Winding Leakage
Reactance (ohm): 6.05602
Stator Differential Leakage
Reactance (ohm): 41.0313
Rotor Slot Leakage Reactance (ohm): 2.41147
Rotor End-Winding Leakage
Reactance (ohm): 0.236442
Rotor Differential Leakage
Reactance (ohm): 2.41419
Skewing Leakage Reactance (ohm): 1.38746
Stator Winding Factor: 0.959795
Stator-Teeth Flux Density (Tesla): 1.06595
Rotor-Teeth Flux Density (Tesla): 1.09456
Stator-Yoke Flux Density (Tesla): 0.978655
Rotor-Yoke Flux Density (Tesla): 2.16179
Air-Gap Flux Density (Tesla): 0.449187
Stator-Teeth Ampere Turns (A.T): 3.60817
Rotor-Teeth Ampere Turns (A.T): 5.71532
Stator-Yoke Ampere Turns (A.T): 20.7733
Rotor-Yoke Ampere Turns (A.T): 153.064
Air-Gap Ampere Turns (A.T): 134.444
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.7
Correction Factor for Magnetic
Circuit Length of Rotor Yoke: 0.137729
Saturation Factor for Teeth: 1.06935
Saturation Factor for Teeth & Yoke: 2.36236
Induced-Voltage Factor: 0.578059
Stator Current Density (A/mm^2): 8.32417
Specific Electric Loading (A/mm): 21.9385
Stator Thermal Load (A^2/mm^3): 182.62
Rotor Bar Current Density (A/mm^2): 4.61463
Rotor Ring Current Density (A/mm^2): 3.95522
Half-Turn Length of
Stator Winding (mm): 227.779
WINDING ARRANGEMENT
Average coil pitch is: 7.66667
Angle per slot (elec. degrees): 20
Phase-A axis (elec. degrees): 90
First slot center (elec. degrees): 0
Sorry, the winding cannot be arranged symmetrically.
The winding factors of each phase are:
Phase A 0.959795
Phase B 0.333333
Phase C 0.333333
The angles between two-phase winding axes are:
Phase A & B 60
Phase B & C 240
Phase C & A 60
If a sinusoidal rotating field links the winding,
the fundamental induced-voltage components will be:
Positive-sequence component 100%
Negative-sequence component 22.6682%
Zero-sequence component 100%
TRANSIENT FEA INPUT DATA
For one phase of the Stator Winding:
Number of Turns: 327
Parallel Branches: 1
Terminal Resistance (ohm): 11.433
End Leakage Inductance (H): 0.0192769
For Rotor End Ring Between Two Bars of One Side:
Equivalent Ring Resistance (ohm): 1.65538e-006
Equivalent Ring Inductance (H): 5.29452e-009
2D Equivalent Value:
Equivalent Model Depth (mm): 60
Equivalent Stator Stacking Factor: 0.95
Equivalent Rotor Stacking Factor: 0.95
Estimated Rotor Inertial Moment (kg m^2): 0.000893137
帮忙看下哪里错了导致功率因数偏低 上科所软件计算单
Y2-8012-0.75KW-220/380V-50HZ用RMxprt设计工程文件 ,谁帮忙看下 哪里错了 我用RMxprt也遇到问题,跟书上的案例对不上结果,而且误差很大。新手 额定输出都是750W
ANSOFT:输入1000W,效率75%
上科所 1.3058(倍输出标么值,也就是1.3058x750w=979W)效率76%
功率差不多吧
至于功率因数相差较大:ANSOFT 0.65 上科0.83.原因1 矽钢片明显不同,原因2ANSFT节距是第10型手动设计,自动设计是第11型,按同心式最大节距,而上科是7.76平均节距 请问你在RMxprt中怎么查看功率因数的,在Maxwell2D中能否查看,如果不能,那要怎样才能计算呢???谢谢 主要是功率因数差别较大,计算方不一致
我试了好多规格,特别是2极异步电机的性能计算差别最大 这种小电机绕组连接方式要注意,rm里只有一种连接方式,确定两者是否一样,会有一点差别但不会有这么大 但ANSOFT计算的功率因数更准确一些,我曾和试验数据对照过 ansoft用的是哪个版本号呢,用新一点的版本如19.2是不是会不一样 计算单,仅看功因差别大,没看启动转矩与启动电流,与上科所计算的差别更大。我也遇到同样的情况,不知道什么原因。 我用ansys2019R1和哈理工计算的结果比较过,rmxprt算出来的结果中,启动电流和启动转矩比哈理工的低,也比实际要低,电流都差不多 The winding factors of each phase are:
Phase A 0.959795
Phase B 0.333333-->?
Phase C 0.333333-->?
页:
[1]