syspack 发表于 2014-11-27 15:23

永磁调速电动机用PWM和正弦波仿真问题

本帖最后由 syspack 于 2014-11-27 16:30 编辑

 请教各位前辈,用rmxprt调速永磁同步电动机模块计算出来的模型,在用一键导入2D进行外电路PWM调制波仿真时一切正常,但是将电源改成正弦波供电时,在相同输出转矩和转速的情况下,正弦波驱动的电流值是PWM驱动的2.5倍,然后将绕组模型改成外电路,加载PWM的外电路节点文件重新计算,电流又降到正常值,已经排除程序数值设置问题,比如正弦波电压峰值和公式、绕组电感、电阻。。

请问这是什么问题啊,实际上会发生这种状况吗?

详细如下:


RMXPRT调速模块一键导入建立的模型:


RMXPRT调速模块一键导入建立的外电路模型,母线电压424.2V,载波频率1k,基波频率50Hz:
更新:将这个模型改成正弦波驱动,电流值仍然是PWM驱动的2.5倍。。。。




RMXPRT自启动永磁同步电动机模块一键导入建立的模型(去掉鼠笼、增加磁性槽楔):



相电压峰值244.95V,频率50Hz正弦波,并联支路、端部电感和电阻跟PWM外电路中相同:
结果在相同输出转矩和转速的情况下,正弦波驱动的电流值是PWM驱动的2.5倍,
然后将绕组模型改成外电路,加载PWM的外电路节点文件重新计算,电流却降到正常值,
请问这是什么问题啊,实际上会发生这种状况吗?


阿Q精神 发表于 2014-11-27 15:35

先贴一张电流的图上来看看,关注一下计算时间,可能未收敛正在瞬态起动过程

syspack 发表于 2014-11-27 16:17

Rmxprt输出文件如下:

ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN

                      File: Setup1.res
   GENERAL DATA

Rated Output Power (kW):        37
Rated Voltage (V):        424.2
Number of Poles:        6
Frequency (Hz):        50
Frictional Loss (W):        18
Windage Loss (W):        20
Rotor Position:        Inner
Type of Circuit:        Y3
Type of Source:        PWM
Modulation Index:        0.9
Carrier Frequency Times:        20
One-Transistor Voltage Drop (V):        0.05
One-Diode Voltage Drop (V):        0.05
Operating Temperature (C):        100

   STATOR DATA

Number of Stator Slots:        36
Outer Diameter of Stator (mm):        265
Inner Diameter of Stator (mm):        180

Type of Stator Slot:        2
Stator Slot       
            hs0 (mm):        0.8
            hs1 (mm):        0.91
            hs2 (mm):        14.5
            bs0 (mm):        3.8
            bs1 (mm):        7
            bs2 (mm):        9.3
Top Tooth Width (mm):        9.00925
Bottom Tooth Width (mm):        9.24552
Skew Width (Number of Slots):        1

Length of Stator Core (mm):        200
Stacking Factor of Stator Core:        0.98
Type of Steel:        DW360_50
Designed Wedge Thickness (mm):        2
Slot Insulation Thickness (mm):        0.35
Layer Insulation Thickness (mm):        0.35
End Length Adjustment (mm):        0
Number of Parallel Branches:        6
Number of Conductors per Slot:        46
Type of Coils:        21
Average Coil Pitch:        4
Number of Wires per Conductor:        1
Wire Diameter (mm):        1.28496
Wire Wrap Thickness (mm):        0.12
Slot Area (mm^2):        160.094
Net Slot Area (mm^2):        122.257
Limited Slot Fill Factor (%):        75
Stator Slot Fill Factor (%):        74.2696
Coil Half-Turn Length (mm):        297.246
Wire Resistivity (ohm.mm^2/m):        0.0217


   ROTOR DATA

Minimum Air Gap (mm):        0.65
Inner Diameter (mm):        64
Length of Rotor (mm):        200
Stacking Factor of Iron Core:        0.98
Type of Steel:        DW360_50
Shaft Diameter (mm):        60
Mechanical Pole Embrace:        0.871653
Electrical Pole Embrace:        0.894174
Max. Thickness of Magnet (mm):        12
Width of Magnet (mm):        47.5
Type of Magnet:        N38UH
Type of Rotor:        4
Magnetic Shaft:        No


   PERMANENT MAGNET DATA

Residual Flux Density (Tesla):        1.24
Coercive Force (kA/m):        880
Maximum Energy Density (kJ/m^3):        272.8
Relative Recoil Permeability:        1.12135
Demagnetized Flux Density (Tesla):        0
Recoil Residual Flux Density (Tesla):        1.24
Recoil Coercive Force (kA/m):        880

   MATERIAL CONSUMPTION

Armature Wire Density (kg/m^3):        8900
Permanent Magnet Density (kg/m^3):        7500
Armature Core Steel Density (kg/m^3):        7650
Rotor Core Steel Density (kg/m^3):        7650

Armature Copper Weight (kg):        5.68114
Permanent Magnet Weight (kg):        5.13
Armature Core Steel Weight (kg):        35.9021
Rotor Core Steel Weight (kg):        26.5911
Total Net Weight (kg):        73.3043

Armature Core Steel Consumption (kg):        69.5378
Rotor Core Steel Consumption (kg):        38.1551


   STEADY STATE PARAMETERS

Stator Winding Factor:        0.836516
D-Axis Reactive Reactance Xad (ohm):        0.617728
Q-Axis Reactive Reactance Xaq (ohm):        2.30096
D-Axis Reactance X1+Xad (ohm):        0.713254
Q-Axis Reactance X1+Xaq (ohm):        2.39649
Armature Leakage Reactance X1 (ohm):        0.0955253
Zero-Sequence Reactance X0 (ohm):        0.0401362
Armature Phase Resistance R1 (ohm):        0.0824188
Armature Phase Resistance at 20C (ohm):        0.0627367


   NO-LOAD MAGNETIC DATA

Stator-Teeth Flux Density (Tesla):        1.89112
Stator-Yoke Flux Density (Tesla):        1.87178
Rotor-Yoke Flux Density (Tesla):        0.756872
Air-Gap Flux Density (Tesla):        1.00301
Magnet Flux Density (Tesla):        0.983508

Stator-Teeth By-Pass Factor:        0.0118039
Stator-Yoke By-Pass Factor:        0.000541387
Rotor-Yoke By-Pass Factor:        2.96249e-006

Stator-Teeth Ampere Turns (A.T):        323.317
Stator-Yoke Ampere Turns (A.T):        143.427
Rotor-Yoke Ampere Turns (A.T):        1.93736
Air-Gap Ampere Turns (A.T):        623.902
Magnet Ampere Turns (A.T):        -1092.16

Leakage-Flux Factor:        1.09822
Correction Factor for Magnetic
Circuit Length of Stator Yoke:        0.117589
Correction Factor for Magnetic
Circuit Length of Rotor Yoke:        0.697943

No-Load DC Current (A):        0.551472
No-Load Input Power (W):        233.934
Cogging Torque (N.m):        1.09397e-011


   FULL-LOAD DATA

Maximum Line Induced Voltage (V):        322.346
Input DC Current (A):        93.3615
Root-Mean-Square Phase Current (A):        98.2825
Armature Thermal Load (A^2/mm^3):        605.925
Specific Electric Loading (A/mm):        47.9692
Armature Current Density (A/mm^2):        12.6315
Frictional and Windage Loss (W):        38
Iron-Core Loss (W):        167.316
Armature Copper Loss (W):        2388.36
Transistor Loss (W):        11.3169
Diode Loss (W):        1.96034
Total Loss (W):        2606.95
Output Power (W):        36997
Input Power (W):        39603.9
Efficiency (%):        93.4174

Synchronous Speed (rpm):        1000
Rated Torque (N.m):        353.295
Torque Angle (degree):        56.6248

Maximum Output Power (W):        77220.4
Torque Constant KT (Nm/A):        3.78805


   WINDING ARRANGEMENT

The 3-phase, 2-layer winding can be arranged in 6 slots as below:

AAZZBB


Angle per slot (elec. degrees):        30
Phase-A axis (elec. degrees):        75
First slot center (elec. degrees):        0



   TRANSIENT FEA INPUT DATA

For Armature Winding:
Number of Turns:        276
Parallel Branches:        6
Terminal Resistance (ohm):        0.0824188
End Leakage Inductance (H):        2.41508e-005
2D Equivalent Value:
Equivalent Model Depth (mm):        200
Equivalent Stator Stacking Factor:        0.98
Equivalent Rotor Stacking Factor:        0.98
Equivalent Br (Tesla):        1.24
Equivalent Hc (kA/m):        880
Estimated Rotor Inertial Moment (kg m^2):        0.156179

syspack 发表于 2014-11-27 16:22

ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN

                      File: Setup1.res
   GENERAL DATA

Rated Output Power (kW):        37
Rated Voltage (V):        424.2
Number of Poles:        6
Frequency (Hz):        50
Frictional Loss (W):        18
Windage Loss (W):        20
Rotor Position:        Inner
Type of Circuit:        Y3
Type of Source:        PWM
Modulation Index:        0.9
Carrier Frequency Times:        20
One-Transistor Voltage Drop (V):        0.05
One-Diode Voltage Drop (V):        0.05
Operating Temperature (C):        100

   STATOR DATA

Number of Stator Slots:        36
Outer Diameter of Stator (mm):        265
Inner Diameter of Stator (mm):        180

Type of Stator Slot:        2
Stator Slot       
            hs0 (mm):        0.8
            hs1 (mm):        0.91
            hs2 (mm):        14.5
            bs0 (mm):        3.8
            bs1 (mm):        7
            bs2 (mm):        9.3
Top Tooth Width (mm):        9.00925
Bottom Tooth Width (mm):        9.24552
Skew Width (Number of Slots):        1

Length of Stator Core (mm):        200
Stacking Factor of Stator Core:        0.98
Type of Steel:        DW360_50
Designed Wedge Thickness (mm):        2
Slot Insulation Thickness (mm):        0.35
Layer Insulation Thickness (mm):        0.35
End Length Adjustment (mm):        0
Number of Parallel Branches:        6
Number of Conductors per Slot:        46
Type of Coils:        21
Average Coil Pitch:        4
Number of Wires per Conductor:        1
Wire Diameter (mm):        1.28496
Wire Wrap Thickness (mm):        0.12
Slot Area (mm^2):        160.094
Net Slot Area (mm^2):        122.257
Limited Slot Fill Factor (%):        75
Stator Slot Fill Factor (%):        74.2696
Coil Half-Turn Length (mm):        297.246
Wire Resistivity (ohm.mm^2/m):        0.0217


   ROTOR DATA

Minimum Air Gap (mm):        0.65
Inner Diameter (mm):        64
Length of Rotor (mm):        200
Stacking Factor of Iron Core:        0.98
Type of Steel:        DW360_50
Shaft Diameter (mm):        60
Mechanical Pole Embrace:        0.871653
Electrical Pole Embrace:        0.894174
Max. Thickness of Magnet (mm):        12
Width of Magnet (mm):        47.5
Type of Magnet:        N38UH
Type of Rotor:        4
Magnetic Shaft:        No


   PERMANENT MAGNET DATA

Residual Flux Density (Tesla):        1.24
Coercive Force (kA/m):        880
Maximum Energy Density (kJ/m^3):        272.8
Relative Recoil Permeability:        1.12135
Demagnetized Flux Density (Tesla):        0
Recoil Residual Flux Density (Tesla):        1.24
Recoil Coercive Force (kA/m):        880

   MATERIAL CONSUMPTION

Armature Wire Density (kg/m^3):        8900
Permanent Magnet Density (kg/m^3):        7500
Armature Core Steel Density (kg/m^3):        7650
Rotor Core Steel Density (kg/m^3):        7650

Armature Copper Weight (kg):        5.68114
Permanent Magnet Weight (kg):        5.13
Armature Core Steel Weight (kg):        35.9021
Rotor Core Steel Weight (kg):        26.5911
Total Net Weight (kg):        73.3043

Armature Core Steel Consumption (kg):        69.5378
Rotor Core Steel Consumption (kg):        38.1551


   STEADY STATE PARAMETERS

Stator Winding Factor:        0.836516
D-Axis Reactive Reactance Xad (ohm):        0.617728
Q-Axis Reactive Reactance Xaq (ohm):        2.30096
D-Axis Reactance X1+Xad (ohm):        0.713254
Q-Axis Reactance X1+Xaq (ohm):        2.39649
Armature Leakage Reactance X1 (ohm):        0.0955253
Zero-Sequence Reactance X0 (ohm):        0.0401362
Armature Phase Resistance R1 (ohm):        0.0824188
Armature Phase Resistance at 20C (ohm):        0.0627367


   NO-LOAD MAGNETIC DATA

Stator-Teeth Flux Density (Tesla):        1.89112
Stator-Yoke Flux Density (Tesla):        1.87178
Rotor-Yoke Flux Density (Tesla):        0.756872
Air-Gap Flux Density (Tesla):        1.00301
Magnet Flux Density (Tesla):        0.983508

Stator-Teeth By-Pass Factor:        0.0118039
Stator-Yoke By-Pass Factor:        0.000541387
Rotor-Yoke By-Pass Factor:        2.96249e-006

Stator-Teeth Ampere Turns (A.T):        323.317
Stator-Yoke Ampere Turns (A.T):        143.427
Rotor-Yoke Ampere Turns (A.T):        1.93736
Air-Gap Ampere Turns (A.T):        623.902
Magnet Ampere Turns (A.T):        -1092.16

Leakage-Flux Factor:        1.09822
Correction Factor for Magnetic
Circuit Length of Stator Yoke:        0.117589
Correction Factor for Magnetic
Circuit Length of Rotor Yoke:        0.697943

No-Load DC Current (A):        0.551472
No-Load Input Power (W):        233.934
Cogging Torque (N.m):        1.09397e-011


   FULL-LOAD DATA

Maximum Line Induced Voltage (V):        322.346
Input DC Current (A):        93.3615
Root-Mean-Square Phase Current (A):        98.2825
Armature Thermal Load (A^2/mm^3):        605.925
Specific Electric Loading (A/mm):        47.9692
Armature Current Density (A/mm^2):        12.6315
Frictional and Windage Loss (W):        38
Iron-Core Loss (W):        167.316
Armature Copper Loss (W):        2388.36
Transistor Loss (W):        11.3169
Diode Loss (W):        1.96034
Total Loss (W):        2606.95
Output Power (W):        36997
Input Power (W):        39603.9
Efficiency (%):        93.4174

Synchronous Speed (rpm):        1000
Rated Torque (N.m):        353.295
Torque Angle (degree):        56.6248

Maximum Output Power (W):        77220.4
Torque Constant KT (Nm/A):        3.78805


   WINDING ARRANGEMENT

The 3-phase, 2-layer winding can be arranged in 6 slots as below:

AAZZBB


Angle per slot (elec. degrees):        30
Phase-A axis (elec. degrees):        75
First slot center (elec. degrees):        0



   TRANSIENT FEA INPUT DATA

For Armature Winding:
Number of Turns:        276
Parallel Branches:        6
Terminal Resistance (ohm):        0.0824188
End Leakage Inductance (H):        2.41508e-005
2D Equivalent Value:
Equivalent Model Depth (mm):        200
Equivalent Stator Stacking Factor:        0.98
Equivalent Rotor Stacking Factor:        0.98
Equivalent Br (Tesla):        1.24
Equivalent Hc (kA/m):        880
Estimated Rotor Inertial Moment (kg m^2):        0.156179

syspack 发表于 2014-11-27 16:33

Rmxprt结果文件直接贴不上来,我做成PDF文件附上,如下:

syspack 发表于 2014-11-27 16:46

我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛?
244.949 * sin(2*pi*50*time+65.0786*pi/180)
244.949 * sin(2*pi*50*time+65.0786*pi/180-2*pi/3)
244.949 * sin(2*pi*50*time+65.0786*pi/180-4*pi/3)
另外motion设置里面也有一个初始角,这个又是做什么用的啊?

阿Q精神 发表于 2014-11-27 17:50

本帖最后由 阿Q精神 于 2014-11-27 17:51 编辑

能看一下转速曲线吗?
你的这个问题,按理在实际应用中不会出现,现在目测是软件方面的问题。

syspack 发表于 2014-11-27 18:03

本帖最后由 syspack 于 2014-11-27 18:06 编辑

我应该相信那个电流值啊,好困扰。。。。

PWM调制波驱动的转速曲线:


正弦波驱动的转速曲线:

阿Q精神 发表于 2014-11-27 18:14

syspack 发表于 2014-11-27 18:03
我应该相信那个电流值啊,好困扰。。。。

PWM调制波驱动的转速曲线:


1)转速转矩电流都已稳定,应该模型应该没什么问题了(当然,为了确保起见还是建议计算到0.4s之后再看看);
2)两个模型都没问题的情况下,就要确定LZ第一段所说的“已经排除程序数值设置问题,比如正弦波电压峰值和公式、绕组电感、电阻。。”这里有没有问题了。也就是保证,两个模型的激励在数值上完全一样

阿Q精神 发表于 2014-11-27 18:19

syspack 发表于 2014-11-27 16:46
我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛? ...

电流初始相位角,转子初始位置没设置吧?一般都是设置转子初始位置角(机械角度)

syspack 发表于 2014-11-27 18:25

本帖最后由 syspack 于 2014-11-27 18:36 编辑

正弦波驱动的电压曲线如下:

PWM驱动的母线电压是424.2V,载波1k,基波50Hz,

阿Q精神 发表于 2014-11-27 18:28

LZ,您说的“但是将电源改成正弦波供电时”,指的是,后来改用电压源么?还是电流源?

syspack 发表于 2014-11-27 18:45

我用的是电压源,然后转子初始角在正弦波驱动和PWM驱动时都设置的30度

syzh1998 发表于 2014-11-28 09:18

研究一下!谢谢分享

syspack 发表于 2014-11-28 09:31

这款电机限于功率密度极大,可能反电势取得太小,貌似仿真没问题{:soso_e132:}

冬虫夏草 发表于 2014-11-28 15:24

syspack 发表于 2014-11-27 16:46
我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛? ...

这个65度就是转矩角,就是反电势落后与端电压的角度。你设置的初始位置角30估计是不正确的,这两个值都可以从你RM计算的算单里找到。

100301628 发表于 2016-1-12 10:51

冬虫夏草 发表于 2014-11-28 15:24
这个65度就是转矩角,就是反电势落后与端电压的角度。你设置的初始位置角30估计是不正确的,这两个值都可 ...

初始位置角在RM设计单中的英文是什么?

敦敦 发表于 2016-1-16 15:40

100301628 发表于 2016-1-12 10:51
初始位置角在RM设计单中的英文是什么?

清单里没有转子初始位置角,有转矩角,但是你可以根据ZD轴和A相中心轴线对齐,找到初始位置角~~

小北斗 发表于 2016-3-23 14:29

我也在做外接逆变电路,但是一直不成功呀,楼主比QQ好多少?

小北斗 发表于 2016-3-23 14:54

你好,能不能把你的逆变电路发我一份,我做了好久都没做出来,谢谢!我的邮箱:1576811762@qq.com
页: [1] 2
查看完整版本: 永磁调速电动机用PWM和正弦波仿真问题