永磁调速电动机用PWM和正弦波仿真问题
本帖最后由 syspack 于 2014-11-27 16:30 编辑请教各位前辈,用rmxprt调速永磁同步电动机模块计算出来的模型,在用一键导入2D进行外电路PWM调制波仿真时一切正常,但是将电源改成正弦波供电时,在相同输出转矩和转速的情况下,正弦波驱动的电流值是PWM驱动的2.5倍,然后将绕组模型改成外电路,加载PWM的外电路节点文件重新计算,电流又降到正常值,已经排除程序数值设置问题,比如正弦波电压峰值和公式、绕组电感、电阻。。
请问这是什么问题啊,实际上会发生这种状况吗?
详细如下:
RMXPRT调速模块一键导入建立的模型:
RMXPRT调速模块一键导入建立的外电路模型,母线电压424.2V,载波频率1k,基波频率50Hz:
更新:将这个模型改成正弦波驱动,电流值仍然是PWM驱动的2.5倍。。。。
RMXPRT自启动永磁同步电动机模块一键导入建立的模型(去掉鼠笼、增加磁性槽楔):
相电压峰值244.95V,频率50Hz正弦波,并联支路、端部电感和电阻跟PWM外电路中相同:
结果在相同输出转矩和转速的情况下,正弦波驱动的电流值是PWM驱动的2.5倍,
然后将绕组模型改成外电路,加载PWM的外电路节点文件重新计算,电流却降到正常值,
请问这是什么问题啊,实际上会发生这种状况吗?
先贴一张电流的图上来看看,关注一下计算时间,可能未收敛正在瞬态起动过程 Rmxprt输出文件如下:
ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN
File: Setup1.res
GENERAL DATA
Rated Output Power (kW): 37
Rated Voltage (V): 424.2
Number of Poles: 6
Frequency (Hz): 50
Frictional Loss (W): 18
Windage Loss (W): 20
Rotor Position: Inner
Type of Circuit: Y3
Type of Source: PWM
Modulation Index: 0.9
Carrier Frequency Times: 20
One-Transistor Voltage Drop (V): 0.05
One-Diode Voltage Drop (V): 0.05
Operating Temperature (C): 100
STATOR DATA
Number of Stator Slots: 36
Outer Diameter of Stator (mm): 265
Inner Diameter of Stator (mm): 180
Type of Stator Slot: 2
Stator Slot
hs0 (mm): 0.8
hs1 (mm): 0.91
hs2 (mm): 14.5
bs0 (mm): 3.8
bs1 (mm): 7
bs2 (mm): 9.3
Top Tooth Width (mm): 9.00925
Bottom Tooth Width (mm): 9.24552
Skew Width (Number of Slots): 1
Length of Stator Core (mm): 200
Stacking Factor of Stator Core: 0.98
Type of Steel: DW360_50
Designed Wedge Thickness (mm): 2
Slot Insulation Thickness (mm): 0.35
Layer Insulation Thickness (mm): 0.35
End Length Adjustment (mm): 0
Number of Parallel Branches: 6
Number of Conductors per Slot: 46
Type of Coils: 21
Average Coil Pitch: 4
Number of Wires per Conductor: 1
Wire Diameter (mm): 1.28496
Wire Wrap Thickness (mm): 0.12
Slot Area (mm^2): 160.094
Net Slot Area (mm^2): 122.257
Limited Slot Fill Factor (%): 75
Stator Slot Fill Factor (%): 74.2696
Coil Half-Turn Length (mm): 297.246
Wire Resistivity (ohm.mm^2/m): 0.0217
ROTOR DATA
Minimum Air Gap (mm): 0.65
Inner Diameter (mm): 64
Length of Rotor (mm): 200
Stacking Factor of Iron Core: 0.98
Type of Steel: DW360_50
Shaft Diameter (mm): 60
Mechanical Pole Embrace: 0.871653
Electrical Pole Embrace: 0.894174
Max. Thickness of Magnet (mm): 12
Width of Magnet (mm): 47.5
Type of Magnet: N38UH
Type of Rotor: 4
Magnetic Shaft: No
PERMANENT MAGNET DATA
Residual Flux Density (Tesla): 1.24
Coercive Force (kA/m): 880
Maximum Energy Density (kJ/m^3): 272.8
Relative Recoil Permeability: 1.12135
Demagnetized Flux Density (Tesla): 0
Recoil Residual Flux Density (Tesla): 1.24
Recoil Coercive Force (kA/m): 880
MATERIAL CONSUMPTION
Armature Wire Density (kg/m^3): 8900
Permanent Magnet Density (kg/m^3): 7500
Armature Core Steel Density (kg/m^3): 7650
Rotor Core Steel Density (kg/m^3): 7650
Armature Copper Weight (kg): 5.68114
Permanent Magnet Weight (kg): 5.13
Armature Core Steel Weight (kg): 35.9021
Rotor Core Steel Weight (kg): 26.5911
Total Net Weight (kg): 73.3043
Armature Core Steel Consumption (kg): 69.5378
Rotor Core Steel Consumption (kg): 38.1551
STEADY STATE PARAMETERS
Stator Winding Factor: 0.836516
D-Axis Reactive Reactance Xad (ohm): 0.617728
Q-Axis Reactive Reactance Xaq (ohm): 2.30096
D-Axis Reactance X1+Xad (ohm): 0.713254
Q-Axis Reactance X1+Xaq (ohm): 2.39649
Armature Leakage Reactance X1 (ohm): 0.0955253
Zero-Sequence Reactance X0 (ohm): 0.0401362
Armature Phase Resistance R1 (ohm): 0.0824188
Armature Phase Resistance at 20C (ohm): 0.0627367
NO-LOAD MAGNETIC DATA
Stator-Teeth Flux Density (Tesla): 1.89112
Stator-Yoke Flux Density (Tesla): 1.87178
Rotor-Yoke Flux Density (Tesla): 0.756872
Air-Gap Flux Density (Tesla): 1.00301
Magnet Flux Density (Tesla): 0.983508
Stator-Teeth By-Pass Factor: 0.0118039
Stator-Yoke By-Pass Factor: 0.000541387
Rotor-Yoke By-Pass Factor: 2.96249e-006
Stator-Teeth Ampere Turns (A.T): 323.317
Stator-Yoke Ampere Turns (A.T): 143.427
Rotor-Yoke Ampere Turns (A.T): 1.93736
Air-Gap Ampere Turns (A.T): 623.902
Magnet Ampere Turns (A.T): -1092.16
Leakage-Flux Factor: 1.09822
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.117589
Correction Factor for Magnetic
Circuit Length of Rotor Yoke: 0.697943
No-Load DC Current (A): 0.551472
No-Load Input Power (W): 233.934
Cogging Torque (N.m): 1.09397e-011
FULL-LOAD DATA
Maximum Line Induced Voltage (V): 322.346
Input DC Current (A): 93.3615
Root-Mean-Square Phase Current (A): 98.2825
Armature Thermal Load (A^2/mm^3): 605.925
Specific Electric Loading (A/mm): 47.9692
Armature Current Density (A/mm^2): 12.6315
Frictional and Windage Loss (W): 38
Iron-Core Loss (W): 167.316
Armature Copper Loss (W): 2388.36
Transistor Loss (W): 11.3169
Diode Loss (W): 1.96034
Total Loss (W): 2606.95
Output Power (W): 36997
Input Power (W): 39603.9
Efficiency (%): 93.4174
Synchronous Speed (rpm): 1000
Rated Torque (N.m): 353.295
Torque Angle (degree): 56.6248
Maximum Output Power (W): 77220.4
Torque Constant KT (Nm/A): 3.78805
WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 6 slots as below:
AAZZBB
Angle per slot (elec. degrees): 30
Phase-A axis (elec. degrees): 75
First slot center (elec. degrees): 0
TRANSIENT FEA INPUT DATA
For Armature Winding:
Number of Turns: 276
Parallel Branches: 6
Terminal Resistance (ohm): 0.0824188
End Leakage Inductance (H): 2.41508e-005
2D Equivalent Value:
Equivalent Model Depth (mm): 200
Equivalent Stator Stacking Factor: 0.98
Equivalent Rotor Stacking Factor: 0.98
Equivalent Br (Tesla): 1.24
Equivalent Hc (kA/m): 880
Estimated Rotor Inertial Moment (kg m^2): 0.156179
ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN
File: Setup1.res
GENERAL DATA
Rated Output Power (kW): 37
Rated Voltage (V): 424.2
Number of Poles: 6
Frequency (Hz): 50
Frictional Loss (W): 18
Windage Loss (W): 20
Rotor Position: Inner
Type of Circuit: Y3
Type of Source: PWM
Modulation Index: 0.9
Carrier Frequency Times: 20
One-Transistor Voltage Drop (V): 0.05
One-Diode Voltage Drop (V): 0.05
Operating Temperature (C): 100
STATOR DATA
Number of Stator Slots: 36
Outer Diameter of Stator (mm): 265
Inner Diameter of Stator (mm): 180
Type of Stator Slot: 2
Stator Slot
hs0 (mm): 0.8
hs1 (mm): 0.91
hs2 (mm): 14.5
bs0 (mm): 3.8
bs1 (mm): 7
bs2 (mm): 9.3
Top Tooth Width (mm): 9.00925
Bottom Tooth Width (mm): 9.24552
Skew Width (Number of Slots): 1
Length of Stator Core (mm): 200
Stacking Factor of Stator Core: 0.98
Type of Steel: DW360_50
Designed Wedge Thickness (mm): 2
Slot Insulation Thickness (mm): 0.35
Layer Insulation Thickness (mm): 0.35
End Length Adjustment (mm): 0
Number of Parallel Branches: 6
Number of Conductors per Slot: 46
Type of Coils: 21
Average Coil Pitch: 4
Number of Wires per Conductor: 1
Wire Diameter (mm): 1.28496
Wire Wrap Thickness (mm): 0.12
Slot Area (mm^2): 160.094
Net Slot Area (mm^2): 122.257
Limited Slot Fill Factor (%): 75
Stator Slot Fill Factor (%): 74.2696
Coil Half-Turn Length (mm): 297.246
Wire Resistivity (ohm.mm^2/m): 0.0217
ROTOR DATA
Minimum Air Gap (mm): 0.65
Inner Diameter (mm): 64
Length of Rotor (mm): 200
Stacking Factor of Iron Core: 0.98
Type of Steel: DW360_50
Shaft Diameter (mm): 60
Mechanical Pole Embrace: 0.871653
Electrical Pole Embrace: 0.894174
Max. Thickness of Magnet (mm): 12
Width of Magnet (mm): 47.5
Type of Magnet: N38UH
Type of Rotor: 4
Magnetic Shaft: No
PERMANENT MAGNET DATA
Residual Flux Density (Tesla): 1.24
Coercive Force (kA/m): 880
Maximum Energy Density (kJ/m^3): 272.8
Relative Recoil Permeability: 1.12135
Demagnetized Flux Density (Tesla): 0
Recoil Residual Flux Density (Tesla): 1.24
Recoil Coercive Force (kA/m): 880
MATERIAL CONSUMPTION
Armature Wire Density (kg/m^3): 8900
Permanent Magnet Density (kg/m^3): 7500
Armature Core Steel Density (kg/m^3): 7650
Rotor Core Steel Density (kg/m^3): 7650
Armature Copper Weight (kg): 5.68114
Permanent Magnet Weight (kg): 5.13
Armature Core Steel Weight (kg): 35.9021
Rotor Core Steel Weight (kg): 26.5911
Total Net Weight (kg): 73.3043
Armature Core Steel Consumption (kg): 69.5378
Rotor Core Steel Consumption (kg): 38.1551
STEADY STATE PARAMETERS
Stator Winding Factor: 0.836516
D-Axis Reactive Reactance Xad (ohm): 0.617728
Q-Axis Reactive Reactance Xaq (ohm): 2.30096
D-Axis Reactance X1+Xad (ohm): 0.713254
Q-Axis Reactance X1+Xaq (ohm): 2.39649
Armature Leakage Reactance X1 (ohm): 0.0955253
Zero-Sequence Reactance X0 (ohm): 0.0401362
Armature Phase Resistance R1 (ohm): 0.0824188
Armature Phase Resistance at 20C (ohm): 0.0627367
NO-LOAD MAGNETIC DATA
Stator-Teeth Flux Density (Tesla): 1.89112
Stator-Yoke Flux Density (Tesla): 1.87178
Rotor-Yoke Flux Density (Tesla): 0.756872
Air-Gap Flux Density (Tesla): 1.00301
Magnet Flux Density (Tesla): 0.983508
Stator-Teeth By-Pass Factor: 0.0118039
Stator-Yoke By-Pass Factor: 0.000541387
Rotor-Yoke By-Pass Factor: 2.96249e-006
Stator-Teeth Ampere Turns (A.T): 323.317
Stator-Yoke Ampere Turns (A.T): 143.427
Rotor-Yoke Ampere Turns (A.T): 1.93736
Air-Gap Ampere Turns (A.T): 623.902
Magnet Ampere Turns (A.T): -1092.16
Leakage-Flux Factor: 1.09822
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.117589
Correction Factor for Magnetic
Circuit Length of Rotor Yoke: 0.697943
No-Load DC Current (A): 0.551472
No-Load Input Power (W): 233.934
Cogging Torque (N.m): 1.09397e-011
FULL-LOAD DATA
Maximum Line Induced Voltage (V): 322.346
Input DC Current (A): 93.3615
Root-Mean-Square Phase Current (A): 98.2825
Armature Thermal Load (A^2/mm^3): 605.925
Specific Electric Loading (A/mm): 47.9692
Armature Current Density (A/mm^2): 12.6315
Frictional and Windage Loss (W): 38
Iron-Core Loss (W): 167.316
Armature Copper Loss (W): 2388.36
Transistor Loss (W): 11.3169
Diode Loss (W): 1.96034
Total Loss (W): 2606.95
Output Power (W): 36997
Input Power (W): 39603.9
Efficiency (%): 93.4174
Synchronous Speed (rpm): 1000
Rated Torque (N.m): 353.295
Torque Angle (degree): 56.6248
Maximum Output Power (W): 77220.4
Torque Constant KT (Nm/A): 3.78805
WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 6 slots as below:
AAZZBB
Angle per slot (elec. degrees): 30
Phase-A axis (elec. degrees): 75
First slot center (elec. degrees): 0
TRANSIENT FEA INPUT DATA
For Armature Winding:
Number of Turns: 276
Parallel Branches: 6
Terminal Resistance (ohm): 0.0824188
End Leakage Inductance (H): 2.41508e-005
2D Equivalent Value:
Equivalent Model Depth (mm): 200
Equivalent Stator Stacking Factor: 0.98
Equivalent Rotor Stacking Factor: 0.98
Equivalent Br (Tesla): 1.24
Equivalent Hc (kA/m): 880
Estimated Rotor Inertial Moment (kg m^2): 0.156179
Rmxprt结果文件直接贴不上来,我做成PDF文件附上,如下:
我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛?
244.949 * sin(2*pi*50*time+65.0786*pi/180)
244.949 * sin(2*pi*50*time+65.0786*pi/180-2*pi/3)
244.949 * sin(2*pi*50*time+65.0786*pi/180-4*pi/3)
另外motion设置里面也有一个初始角,这个又是做什么用的啊?
本帖最后由 阿Q精神 于 2014-11-27 17:51 编辑
能看一下转速曲线吗?
你的这个问题,按理在实际应用中不会出现,现在目测是软件方面的问题。 本帖最后由 syspack 于 2014-11-27 18:06 编辑
我应该相信那个电流值啊,好困扰。。。。
PWM调制波驱动的转速曲线:
正弦波驱动的转速曲线:
syspack 发表于 2014-11-27 18:03
我应该相信那个电流值啊,好困扰。。。。
PWM调制波驱动的转速曲线:
1)转速转矩电流都已稳定,应该模型应该没什么问题了(当然,为了确保起见还是建议计算到0.4s之后再看看);
2)两个模型都没问题的情况下,就要确定LZ第一段所说的“已经排除程序数值设置问题,比如正弦波电压峰值和公式、绕组电感、电阻。。”这里有没有问题了。也就是保证,两个模型的激励在数值上完全一样
syspack 发表于 2014-11-27 16:46
我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛? ...
电流初始相位角,转子初始位置没设置吧?一般都是设置转子初始位置角(机械角度) 本帖最后由 syspack 于 2014-11-27 18:36 编辑
正弦波驱动的电压曲线如下:
PWM驱动的母线电压是424.2V,载波1k,基波50Hz,
LZ,您说的“但是将电源改成正弦波供电时”,指的是,后来改用电压源么?还是电流源? 我用的是电压源,然后转子初始角在正弦波驱动和PWM驱动时都设置的30度 研究一下!谢谢分享 这款电机限于功率密度极大,可能反电势取得太小,貌似仿真没问题{:soso_e132:} syspack 发表于 2014-11-27 16:46
我取出正弦波驱动电压里完整的公式,发现没相都多出一个65度的提前角出来,请问这是做什么用的,加速收敛? ...
这个65度就是转矩角,就是反电势落后与端电压的角度。你设置的初始位置角30估计是不正确的,这两个值都可以从你RM计算的算单里找到。 冬虫夏草 发表于 2014-11-28 15:24
这个65度就是转矩角,就是反电势落后与端电压的角度。你设置的初始位置角30估计是不正确的,这两个值都可 ...
初始位置角在RM设计单中的英文是什么? 100301628 发表于 2016-1-12 10:51
初始位置角在RM设计单中的英文是什么?
清单里没有转子初始位置角,有转矩角,但是你可以根据ZD轴和A相中心轴线对齐,找到初始位置角~~ 我也在做外接逆变电路,但是一直不成功呀,楼主比QQ好多少?
你好,能不能把你的逆变电路发我一份,我做了好久都没做出来,谢谢!我的邮箱:1576811762@qq.com
页:
[1]
2