调速永磁同步电机设计和测试相差甚远问题?
本帖最后由 lanjeo 于 2015-4-29 10:02 编辑调速永磁同步电机:设计如下,但是设计数据和测试数据相差甚远,设计时额定电压为360V但是实际测试出来后发现达到额定负载时,电压达到了440V奇怪,这是个相当难度的问题,不知道有哪位兄弟可以帮回答一下原因?电流的数据基本吻合!所用软件ansoft maxell 5.0。
ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN
GENERAL DATA
Rated Output Power (kW): 33.4
Rated Voltage (V): 360
Number of Poles: 24
Frequency (Hz): 42.4
Friction and Wind Loss (W): 1200
Rotor Position: Inner
Type of Circuit: Y3
Type of Source: Sine
Domain: Frequency
Operating Temperature (C): 75
STATOR DATA
Number of Stator Slots: 54
Outer Diameter of Stator (mm): 480
Inner Diameter of Stator (mm): 340
Type of Stator Slot: 3
Dimension of Stator Slot
hs0 (mm): 1
hs1 (mm): 2
hs2 (mm): 50
bs0 (mm): 4
bs1 (mm): 11.2
bs2 (mm): 16.9
rs (mm): 2
Top Tooth Width (mm): 8.92946
Bottom Tooth Width (mm): 9.04723
Skew Width (Number of Slots): 1
Length of Stator Core (mm): 210
Stacking Factor of Stator Core: 0.95
Type of Steel: DW540-50
Slot Insulation Thickness (mm): 0.3
End Length Adjustment (mm): 1
Number of Parallel Branches: 3
Number of Conductors per Slot: 68
Type of Coils: 21
Average Coil Pitch: 2
Number of Wires per Conductor: 8
Wire Diameter (mm): 0.919069
Wire Wrap Thickness (mm): 0.06
Stator Slot Fill Factor (%): 75.5311
Coil Half-Turn Length (mm): 280.766
ROTOR DATA
Minimum Air Gap (mm): 1
Inner Diameter (mm): 280
Length of Rotor (mm): 210
Stacking Factor of Iron Core: 0.95
Type of Steel: zhutie
Polar Arc Radius (mm): 169
Mechanical Pole Embrace: 0.86
Electrical Pole Embrace: 0.862778
Max. Thickness of Magnet (mm): 5
Width of Magnet (mm): 37.9696
Type of Magnet: n35sh
Type of Rotor: 2
PERMANENT MAGNET DATA
Residual Flux Density (Tesla): 1.19
Coercive Force (kA/m): 876
Maximum Energy Density (kJ/m^3): 275
Relative Recoil Permeability: 1
Demagnetized Flux Density (Tesla): 7.26318e-005
Recoil Residual Flux Density (Tesla): 1.10079
Recoil Coercive Force (kA/m): 876.01
MATERIAL CONSUMPTION
Armature Copper Density (kg/m^3): 8900
Permanent Magnet Density (kg/m^3): 7800
Armature Core Steel Density (kg/m^3): 7750
Rotor Core Steel Density (kg/m^3): 7350
Armature Copper Weight (kg): 48.6982
Permanent Magnet Weight (kg): 7.47958
Armature Core Steel Weight (kg): 76.4704
Rotor Core Steel Weight (kg): 33.6097
Total Net Weight (kg): 166.258
Armature Core Steel Consumption (kg): 360.694
Rotor Core Steel Consumption (kg): 160.652
STEADY STATE PARAMETERS
Stator Winding Factor: 0.945214
D-Axis Reactive Reactance Xad (ohm): 0.954227
Q-Axis Reactive Reactance Xaq (ohm): 0.954227
D-Axis Reactance X1+Xad (ohm): 2.49987
Q-Axis Reactance X1+Xaq (ohm): 2.49987
Armature Leakage Reactance X1 (ohm): 1.54564
Zero-Sequence Reactance X0 (ohm): 1.21658
Armature Phase Resistance R1 (ohm): 0.156123
NO-LOAD MAGNETIC DATA
Stator-Teeth Flux Density (Tesla): 1.81891
Stator-Yoke Flux Density (Tesla): 1.01069
Rotor-Yoke Flux Density (Tesla): 0.659754
Air-Gap Flux Density (Tesla): 0.776093
Magnet Flux Density (Tesla): 0.792338
Stator-Teeth Ampere Turns (A.T): 522.902
Stator-Yoke Ampere Turns (A.T): 2.86278
Rotor-Yoke Ampere Turns (A.T): 4.15763
Air-Gap Ampere Turns (A.T): 697.07
Magnet Ampere Turns (A.T): -1227.34
Leakage-Flux Factor: 1
Correction Factor for Magnetic
Circuit Length of Stator Yoke: 0.679825
Correction Factor for Magnetic
Circuit Length of Roor Yoke: 0.592696
No-Load Line Current (A): 18.3175
No-Load Input Power (W): 1624.62
Cogging Torque (N.m): 3.63061e-011
FULL-LOAD DATA
Maximum Line Induced Voltage (V): 469.541
Root-Mean-Square Line Current (A): 71.0219
Root-Mean-Square Phase Current (A): 71.0219
Armature Thermal Load (A^2/mm^3): 363.02
Specific Electric Loading (A/mm): 81.3835
Armature Current Density (A/mm^2): 4.46061
Friction and Wind Loss (W): 1200
Iron-Core Loss (W): 266.439
Armature Copper Loss (W): 2362.46
Total Loss (W): 3828.9
Output Power (W): 33404.5
Input Power (W): 37233.4
Efficiency (%): 89.7165
Synchronous Speed (rpm): 212
Rated Torque (N.m): 1504.67
Torque Angle (degree): 47.7041
Maximum Output Power (W): 43583.7
WINDING ARRANGEMENT
The 3-phase, 2-layer winding can be arranged in 9 slots as below:
AZBCYABXC
Angle per slot (elec. degrees): 80
Phase-A axis (elec. degrees): 100
First slot center (elec. degrees): 0
TRANSIENT FEA INPUT DATA
For Armature Winding:
Number of Turns: 612
Parallel Branches: 3
Terminal Resistance (ohm): 0.156123
End Leakage Inductance (H): 7.9911e-005
2D Equivalent Value:
Equivalent Air-Gap Length (mm): 210
Equivalent Stator Stacking Factor: 0.95
Equivalent Rotor Stacking Factor: 0.95
Equivalent Br (Tesla): 1.10079
Equivalent Hc (kA/m): 876.01
Estimated Rotor Inertial Moment (kg m^2): 2.09885
无人能解释原因 看看你反电动势电压 反电动势电压为332V 减少线圈匝数试试,需要降低反电动势。
哦,但是减少线圈的圈数,电流会增大的。 Maximum Line Induced Voltage (V): 469.541
你设计的时候反电动势就挺大,并不是你给360V就是360V的,估计你的电机功率因数不高,可以减少线圈匝数 设计单中的最大反电势已有469V了。 有可能是设计时电流角(电流与反电势夹角)比较大吧,而实际电机运行时控制器采用id=0控制策略,那么设计时就是处于弱磁状态了,端电压可以比较小。 楼主,你好,从你的计算单来看,你设计的电磁方案中,额定转速下反电势最大值是469.541V,那么此时的反电势有效值为469.541÷1.414=332V,根据调速永磁同步电机最佳设计原则,额定点反电势要尽量接近施加电压,但又要略小于施加电压,大概保持 反电势÷施加电压=0.92--0.96,而332÷360=0.9222,基本上就在合理的范围内,所以除了槽满率稍低一点外,其他参数设计还算合理。
至于你说的电压达到440V,我觉得可能性似乎不大,如果真出现这样的问题,有可能是变频器的电角度调得不对,你可以调整一下,我们公司以前也遇到过类似的问题,后来调整电角度后就好了。 调速电机要分析的参数不仅仅是额定值,而且要包括,调速范围内的上下限,参数,需要进行更多的优化折中选择参数. 不知道你们采用什么控制方式,如果控制角对的话,就说明你的永磁体用的太少,匝数太多,导致较低的功率因数。因为额定值刚开始时认为定的,在这种情况下,电流差不多说明效率是差不多的,所以就是因为你的功率因数太低,这还会影响到电机的过负载性能。 还有,楼主提供的hs2=2mm有点小问题,会造成肩角比较高,槽楔容易松动,可以适当提高hs1的值,并减少hs2的值,让肩角的角度尽量保持在30°左右比较合理。从工艺的角度来讲,肩角是越小越好的,这样有利于槽楔的固定;但是肩角过小又容易使齿尖部分饱和,从而影响电机性能。所以肩角的选择经常是一个折中的选择。个人意见,供参考。 另外还要稍微解释一下为何定子齿尖部分不能太薄的原因。定子槽hs1值过小,会造成齿尖过薄,很容易达到磁饱和。硅钢片的磁密度达到1.8T后,其导磁能力与空气接近,磁力线就会避开齿尖部分,相当于电机的槽口扩大了许多,而且还是不对称的,这时对于磁力线来说,磁阻的非线性程度大大增加,所以电机气隙中的谐波分量会增加(谐波产生的原因是磁阻的非线性),造成电机的振动和噪音的增加。因此,hs1的值要保证,不能太小。 极槽数配合不好
齿磁密太高
永磁体太厚,永磁体偏心太多,成本太高
反电势太高
楼主业余选手。 这就是用商业软件的缺点,参数设置得不对,但你又无法修改! hildr 发表于 2013-12-16 00:07
极槽数配合不好
齿磁密太高
永磁体太厚,永磁体偏心太多,成本太高
永磁同步电机的齿磁密空载时都是选择这么高的,这是参照我们的刘博士的建议来设计的! chenwenmin 发表于 2013-12-12 11:56
楼主,你好,从你的计算单来看,你设计的电磁方案中,额定转速下反电势最大值是469.541V,那么此时的反 ...
应该是你所说的这样,但是变频器的角度不知道如何调整。后来重新设计了一个,将角度调整20度左右就没有这个问题了。我们采用的控制是Id=0的控制!非常感谢建议! 用软件计算出来的数据只能做参考
具体实施需要调整圈数以及线径等 学习了多谢回答。
页:
[1]
2