潇洒贤人 发表于 2008-12-13 12:14

Ansoft里有调节开通角和关断角的办法么?

Lead Angle of Trigger 和Trigger Pulse Width 是指的什么呢?
另外,在Ansoft里开通角和关断角是怎么调节的?
本人初接触这个软件,基本不懂,烦请各位高人指点一二。
谢谢!!!

[ 本帖最后由 潇洒贤人 于 2008-12-13 22:01 编辑 ]

y1949b 发表于 2008-12-13 20:41

Lead Angle of Trigger   应该叫做 触发超前角   个人认为 很类似于电流超前角的概念

Trigger Pulse Width   触发脉冲宽度 (电角度)

有这两个就足够了啊



ps:兄弟,以后发帖,题目最好把问题说清楚,就是以实际的问题作为你的题目,这样才能有更多的人给你回答

潇洒贤人 发表于 2008-12-13 22:02

回复 2楼 y1949b 的帖子

呵呵,谢谢。
您说的这个电角度是不是指的是导通角呢?
我也是刚刚接触这个软件,基本不懂,不知道每相开关的开通时角度及关断时角度有调节的办法没?

wangv105 发表于 2008-12-13 23:22

rmxprt还是maxwell里?
对BLDCM来说,对于两两导通的驱动方式,rmxprt里Lead Angle of Trigger =0,Trigger Pulse Width =120就行了
maxwell用瞬态仿真的外电路设置比较麻烦,可以参考ansoft的一个无刷机的设计文档

潇洒贤人 发表于 2008-12-14 14:38

4# wangv105
首先,表示感谢,在rmxprt里,您所说的Trigger Pulse Width 的值与电机的相数有关系没有?例如我做的这个是四相SRM,想考察开通、关断角对其运行的影响。

wangv105 发表于 2008-12-14 16:49

Trigger Pulse Width 可以理解为电机一相导通的电角度范围
对三相无刷机Trigger Pulse Width =120,就是360度的电周期里每相导通120度
四相的开关磁阻电机看你的工作方式来设定这个长度
Lead Angle of Trigger提前导通角,用这个来设定你想提前多少就开始让绕组导通
用RMxprt做定性分析看看还行,也只能定性的看看,具体的偏差建议还是做有限元分析
其实我也不是很清楚Trigger Pulse Width的起始点是怎么决定的,
如三相BLDC,如果仅导通100度,这100度是从120度的中点对称截取100度,还是从120度的起点向后截取100度,这个就不是很清楚了。
我没细分析过,建议用有限元分析下,如果只是针对一个电机模型,也应该很快就能做完吧,结果也更有参考意义

llnayyj 发表于 2008-12-15 19:52

用外接电路来做,一个主电路加一个控制电路就可以了。
通过脉冲电压调节开关开通或者关断就可以了。
我用它做过开关磁阻电机,很好用,步进电机和无刷电机也是一个道理。

雨寂 发表于 2012-2-16 21:55

谁有Ansoft外电路控制的资料吗?发个链接吧,先代表大伙谢谢好心人了

呛呛呛wzm 发表于 2019-8-17 15:25

llnayyj 发表于 2008-12-15 19:52
用外接电路来做,一个主电路加一个控制电路就可以了。
通过脉冲电压调节开关开通或者关断就可以了。
我用 ...

您好 我也在做SRM的控制优化 请问您这种方法可以具体和我说一下嘛 或者您的文件可以发我一份么 谢谢

sunsson 发表于 2019-8-17 15:51

开通角通常要超前开通,为的是电流能够快速升高,在电感进入最大位置前电流已经足够大,保证电机有足够的力矩输出

卡卡罗特Mayday 发表于 2020-3-28 21:20

sunsson 发表于 2019-8-17 15:51
开通角通常要超前开通,为的是电流能够快速升高,在电感进入最大位置前电流已经足够大,保证电机有足够的力 ...

您好请问还在吗?最近也在做开通角的问题,请问在Maxwell外电路中怎样修改开通角关断角呢?

sunsson 发表于 2020-3-31 13:35

卡卡罗特Mayday 发表于 2020-3-28 21:20
您好请问还在吗?最近也在做开通角的问题,请问在Maxwell外电路中怎样修改开通角关断角呢?

可以调整,参考截图

卡卡罗特Mayday 发表于 2020-3-31 21:19

sunsson 发表于 2020-3-31 13:35
可以调整,参考截图

我的界面跟您的有点不一样,我用的外电路是这样的,请问这样设置是Td开通角1°,Pw关断角30°的吗?**cD543AhxJkozmzAGufWngzfeXymxM9w097rwuN/vVOUN1DiqNQWcjOOUGp/1e23t/MjcraR/M9q2HPgGux36MCBT3AlzXOdE2iC4/PnbG9baN+oxjrjz152Tq4CEBrna+dc7iDinjmH3uMaP83jJL3ec49quP0t86P/Pts8R966C5zfYZ737712/mWoAjSZJjnf0ulLlvzG+zUgMGRb1ed3cwVhsgZga/+YFwJsD1fO2Qb/SrA9Tc8smh9dcjwPXaj9Igtue+dA1I785KNmYEm8dg7Izr7b0zIahST7kby2Se97gZuPqXAJn6GlLGtuA3cDa6/dhlPiM9jmOv+uiql56zxH3roH48O2e87+5f/5lrAY4kSY71AdfAlb1+G12aFekxk9b7dSMD3P2ZpfYAd++1g5ZklbeZWT45vP76B7hes2vlkHRnn+4NSCthvxEGMuF1lhnX9hnRanhuX653fxaoWQfDAlxb6KyXeWAZ7+7z1Bnl9lnqruM4qA2pnatDzuN+ddDj81op/539G/DZEuBIkuRYHxvgMt9Y9xpA9X3d0ADX+7qa3OC032uHXlNTWRqYnXEZUn/535DrE/I67frZg4t9B6Tfs4mZ/artR2NWafDx7jge5brtGnjXjsEj7kI55KYzk8qY2efxM8r5mbV7xzFbH6Nm4LpniXvVQcvzuma8u/ev/8y1AEeSJMf6AwGuNMi7DRr7BLgerxsxoL8OoBuza5Vt5UNOn9cOvinC+0sqfr2kl9xsyIj6a8w8XG/fP6QOPl/TS2OWIXdr92+HDUivA91SORvX4FXf76kC3J3z4ycD3PgZ5ZalkXeO45D66PVlT8ss8bgAd3/Gu9f+9Zi5FuBIkuRYH7yEsjbj8Os1ffZaQtnzdSMG9I1ttw2ySr9bVg5y9147/K52mUHjpPqr3YTh5b29Xu7tx+3v3YPwv39HDEgbS+u+ZzNyx2xSgMvUbd9ZyccvoWzatax4yhLKMTOxgwPcnePYvz4y15N1fbZqX3b0q4Pa/3vMeA/av46ZawGOJEmOdVKAI69234WyHgDzSz27ZiOnBbgic/OO6ntkZyUzz1suwA0s49h97j2j3BEAu2aV+9TH9cuTruN9Z5a4bx00A1z3jHfn/g2YuRbgSJLkWAU4zmL3gLR6a/XcdV/V57XMnExYQlm/9X37UsTumcclA9zQMvbZ50kzyi2z1PdmlTvfv+N1+eXC+XroWwfNu1B2z3j3Ok97zFwLcCRJcqwCHGdxngFpy8xcEPsEuJ9w+DLeuV3+OD62DqbvnwBHkiTHKsBxFmcZkPa46cWaFeDWcxwfWgcz7J8AR5IkxyrAcRbnGJDmlklGUoBbz3F8ZB3MsX8CHEmSHKsAx1mcMiC9XXe06LK/+epg6c/OUgFuTcfxEXUw5/4JcCRJcqwCHGfRgHQ9AY7r1+eFJEmOVYDjLBqQCnDsr88LSZIcqwDHWSyHFwAAAACPQYDjrH59fZEkSZJ8kAIcSZIkSQZRgCNJkiTJIApwJEmSJBlEAY4kSZIkgyjAkSRJkmQQBTiSJEmSDKIAR5IkSZJBFOBIkiRJMogCHEmSJEkGUYAjSZIkySCuKsC9vb1lXapy3l+KVPx6TZ8rOFBLuLbj8dPHbuvHnyRJkutzNQHuGg7++eefikNDw/tLkYriJb1n//6ZXn8VqXh577+tjQ7g5zoeN99fUlEU3z60Xi/HedJ7zLENkiRJcl5XEeDKQaFOOTj02t4lKLy8Z/72+Zp+tf0t41YD3KzH4+/f9Pn6qxmq31/Sr9fP0vPe08uAYzP9dXNvgyRJkny8iwe4a1i4x9fXV0op9djmeTCem2XLBokOtxjgHnU8qmGt/XkCHEmSJNnuogGuvEzvSmWZXVE0AkOf0JAPauclcdUgcVkmd3u/6muqAS4fRLIh7zLT9zPLBR97PO4FuPvHoz1QV49X9bh/13P7Mep6XfO4XMpx8RrWhm2juZ0+70GSJEnO5eIBriu8tYW4u9vOLZX8fE2/il/p9fP7sc/Xl9L/m9c8jQpw7y+pqLxPnGup+oa3ocfjfF3ivWsP87Ng945R2+vuHbv316Hb+Htbnls5Bz5f0+t7n/cgSZIkp/ucAS5zs5LP11/3Q9T7S2WGZ3iAO79vY+YlEx7X6KMC3K3+i64g13MZY+0Y9Qpfd6997BPg7twAZ+D1lSRJkuQYnzTA1ZdR5pZPnr3NDmWW6A0OcPWlkzXXPrh/ZIBr1nc90LYHuK5jNCh8tS5nnSME3nsPkiRJcrpPG+AqA+7sDNj1eqVSGJg6Axd8FuYnAtzZa9i5F8TuH6Peyx9Lx6ft2rVpAe7ee5AkSZLTXTzAPeImJlffX85L3j5ffzWXvjWuVWve/KTPEro+IS+Kj7mJSYt9gliPYzQowFW2W37NuOvo7u9f3DBPkiTJdfqEPyNQ8v0lFb9e0kvuurT6APs2c9IW4DI/En79cerSc67XejVuoNLzx8OX9jE/I1Cf/cyF4UxA6nGM+s6MvjS2Wy5TvxvUZI/t+8ttlrf7PUiSJMnpLh7g/v49h4avr6/KrE45KIxfqpdZgleycmONX6/ps3MJ5d/UuKX9y3t2pqdxa/pgS+nmPx61W++3zWRdA3Hp7/eOUdvr8uG77fq7ftuoP69+Q5a770GSJElOdBUB7vp+5YBQDxBLV9TWdDxIkiTJ9bmaAHd9zxxLV9JWdTxIkiTJdbmqAEeSJEmSbFeAI0mSJMkgCnAkSZIkGUQBjiRJkiSDKMCRJEmSZBAFOJIkSZIMogBHkiRJkkEU4EiSJEkyiAIcSZIkSQZRgCNJkiTJIApwJEmSJBlEAY4kSZIkgyjAkSRJkmQQBTiSJEmSDKIAR5IkSZJBFOBIkiRJMogCHEmSJEkGUYAjSZIkySAKcCRJkiQZRAGOJEmSJIMowJEkSZJkEAU4kiRJkgyiAEeSJEmSQRTgSJIkSTKIAhxJkiRJBlGAI0mSJMkgCnAkSZIkGUQBjiRJkiSDKMCRJEmSZBAFOJIkSZIMogBHkiRJkkF8ygD39vZGkiRJkk/n0wa4f/75hyRJkiSfyqcOcHMy9/a2jvoEAGAa0frSaOWNhvrdDk8f4L6+viY79/a2rvokSXKa0frSaOWNpvrdlpsIcGvb3tZVnyRJTjNaXxqtvNFUv9tSgFtge1tXfZIkOc1ofWm08kZT/W5LAW6B7W1d9UmS5DSj9aXRyhtN9bstBbgFtrd11SdJktOM1pdGK2801e+2FOAW2N7WVZ/k+n1/KVLx6zV9rqAsJJsu1ZeObRuilfdn/Uyvv4pUvLyHOx/W4tzHee3njQC3wPbKfr7+SkXR9qGd/oFeo1tvZMhH+f5SpKJ4Se/Zvw9rT9beeZFbt29f+v4y5xjj8poZA9xtHFTz5X2eeorRlq07wOWP0a/0+rl0vdXqb7bjPPf25leAW2B7ZcsfimZjJcCRHOD7S/vA5/M1/RowKIox6CG36zIBLud7eunRtnQGuAe2NY9py/rtc38DBLh6HV76lPhj1LmP5c8owC2wvbLnD8VLevmV++ZcgCM5xHNHlGszzl8Wtc3ONRXgyHUrwPVTgJtu+zE618Ov18+HHLufUYBbjfEC3Gv6zH6TkftAXx67TWFXB2TXhroy3X350FWnwDMDuWsZaq9b+/Eh+W0+qJ3bjWon26MtubUB+U46OzD6oXaE3LrzB7jv/3eNF8qf+9zSurbB/JgA1xa+qo8/oi1r3+bdfe7TBl5WS9x8eQ0a4Fr6nLt1cPmysXUFWvXv5ddfj9X79Thc/lY/hrf/18tSquOuY9mrf2uUvd9naA4FuAW21/ahuB7s75OhGeA+X19Ka46ba3TP18CUGpPyyXbbTuZb+veX2nrmx63/FeDIB5pbKvn5mn7Vrlfo1ZYMHfT8YDtCbt2HBbjKZ705XmgObB84A9doU/422rhHtGX3ttm6z33awMxS9+vYLWKAa/Qvd+ugeQzeX5v1Uw/Fr+/ddZUNcPXwmJ0syR/LfP+W61vLZe33GZpDAW6B7ZWtfiiuB/6a1HtMqb+/VJJ97huD3I0Nct9eNRqizKBvjceHZNncFz89lih1tiV9Bj0/246QW/dhAa7WVtRnWB4S4GqzGvVxULntubscfHJbdn+b+X3u0wa2LTmMuoTyby1Q96iDzuux79dD28268gGu+bzm+dMnwLUvFa1ur99naA4FuAW21zjwrd8O5E/k27cKmanZXEOda5gq75uZEn7EnaB+oj5J5juUXMdzty0ZMuj54XaE3LqPXEJZft6PBLiO8JT7ojvbFs3VlvXYZnaf+7SBreEleoCrhrPufqC0PLVliWLXudRvWW1HKG/MEPYIcF3lqmyv32doDgW4BbbXOKjZpF6kl/f6iXBdE1w6CXLfNI0McD81wBLgyAdb/kxnZ8B6tiUjApygRv6MgwJcdvAdI8B1t2cPaMt6bLMrwHXWwxMGuMr5MaQfKIe9Af2IAHdWgFtge42D2jjBrt9O/Eq/yidCZi14tmEdGuB++C5CAhz5eCs3NKoPCvq2JfXl3Z1tyzPcjYyMY9++tH3wWB+4rjTA/e1ozx7RlvXYZn6f+7SBbc+Zfp3UOu5COaIfqFxbdv/1gwJcj6WWD1lCKcCt4yRe5EORu/lI/QLK23OmBrjcDVQu23/ATxgIcOQP+P5y+4mS/IX2PdqSrs7wehe1hdoRcuv270sv4SB3l8XcYyMD3L1B+6SfEbiEql/19uwRbVmPbbbtc5828Pz+1YDYvDFHPdDd+/8CY9VrvWXPl446+HxNL+V6qwXm7OvfX27/Hxbgikzg7xe8mze2yZfr3s0Hc5+hORTgFthe46B2TktXT4TGzwPMsYQyt+3c2uSVHh+SOTPLgEr2aku6bqv98t7etvxAO0Ju3WF9af22+LnZnrEB7m/ltvijfkagKJpm7hSYa08e0Zbd22bXPvdpA+vX1zUvmRn6/x8YqzaOUXsguVcH1f3P3OSq8TMLXXdBzT/e+LmBW11nypw5lvfO83zZBbhJRgpwW1R9kiQ5zWh9abTyRlP9Vn3MD7ivRwFuge1tXfVJkuQ0o/Wl0cobTfVbVYBbQSGHKsCtW/VJkuQ0o/Wl0cobTfVbVYBbQSGHKsCtW/VJkuQ0o/Wl0cobTfVbVYBbQSGHKsCtW/VJkuQ0o/Wl0cobTfW7LQW4Bba3ddUnSZLTjNaXRitvNNXvthTgFtje1lWfJElOM1pfGq280VS/2/LpA9zb29sszr29ras+SZKcZrS+NFp5o6l+t+NTBziSJEmSfCafOsDNydzb2zofHx9LFwEAgNBE60ujlTca6nc7PH2A+/r6muwjAuHW0cgAADCNaH1ptPJGQ/1uh00EuDXO6G0djQwAANOI1pdGK2801O92EOAEuEXQyAAAMI1ofWm08kZD/W4HAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNIbW73FfpGJ3SKcHlWdJnnnfUhLgRge402GXiqJIxf6YqdZTOuza/oaUNOIAAEwlWl8arbzRqNfvbaxa8zo8fd6QcxmHP+W+nRHgpga40geh9FcB7g4acQAAphGtL41W3mhkA1xHiIkZ4I5pnx17P+v75hHgpgS43T7td0Uqin2qHk8B7h4acQAAphGtL41W3mgIcM/4vnkEuEkB7pBOp0PaNZZS5gLc5bHbFHY19B335+dXprsvH6rqFHg9LKaUrmWovW7NaMQBAJhGtL40WnmjMUuAuzOmfNx49Xvs3Lad3JLQ3SG/d9V9u7/ty6vSPrPUtPt9u8b3fd93OALc1ABXOrDfea0Z4E6Hffo+x5prc4/72glRPslv27mcWOVgeNynoth1bnuNaMQBAJhGtL40WnmjMTnA9RhTPm68+h2EvsNRZjs9Z8KyAa5z2+f/lwPh8VCuu/z7do/v++7TcAS4GQLc9wG6JuoeSyiP+0oCz30Lcv6QZGbqau/beJvTIe0qH5L1oREHAGAa0frSaOWNRr+bmLSNPfuNKR83Xs1PQJz3obztCQGua9uXINq+3Z5LKCvj+777NBwBbpYAl76/gdgfU1uAu35r0fohyj0/d9Cvj9WnolvuMrRGNOIAAEwjWl8arbzRmDQD13NM+bjxan7sPGuA69x2aSlkts7a37d9fN93n4YjwM0V4FIqLaWsH7DrmtrSwcrNwI38QKw5qLWhEQcAYBrR+tJo5Y3GHAGuVzB6yHh16QB3e/A7bO7uLaG8N74X4EIEuO/0vku78gFrrPttHrxRH4jMet0oaMQBAJhGtL40WnmjMe0auH5jyseNV1cS4L43UFvNlnnfu+N7AS5IgEv5iznrJ8HtOVMDXO4GKpftr3xaTiMOAMA0ovWl0cobjak3MekzpnzceHVYgOsVNIcEuNMh7cvbbISzzPveHd/32af8zVQ6bwiTBLj5A1z6Pkmrd6Gs3W51jiWUuW37GQEAADZBtL40Wnmj0e8mJt/jzdZxZo+fEUj1xyaPVwfMVl2C05ifEejadvVatszNADPv2z2+H3DtXWuQzW9DgBsZ4DANjTgAANOI1pdGK2801O92EOAEuEXQyAAAMI1ofWm08kZD/W4HAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdhDgBLhF0MgAADCNaH1ptPJGQ/1uBwFOgFsEjQwAANOI1pdGK2801O92ePoA9/b2NosC3LxoZAAAmEa0vjRaeaOhfrfDUwe4uf34+CBJkiTJxXzqADcnZuDm5ePDt0QAAEwhWl8arbzRUL/b4ekD3NfX12QtoZwfjQwAANOI1pdGK2801O922ESAW+OM3tbRyAAAMI1ofWm08kZD/W4HAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdhDgBLhF0MgAADCNaH1ptPJGY476Pe6LVOwO6TTT88Y+fyw/9T5LI8CNCHDHfZGKYp+O2So9pcOuSMW++dfTYZd9fIuMaWROh5SK/QMKAwBAQKIFonF9v7FTX+r1OzzMXMawd1/T93lTyjIOAS4JcG0BLh33qSiKlG1PToe0q//t8lhR5IPdFhnUiJ9S2hUpFYUABwDAlacOcMZOg5ke4HIc075tzDtkK4sFuHnKvzYEuDEB7nIytM6ylWbnTofd7UQ67jVCV/o24qdDSsUuXepPgAMA4MqzBjhjp3EIcAJcSkmAaw9wzaB2eTQddkXaHfKnp0bomzGdjgAHAMA3zxrgyhg79ac7wH1f4nMew15mN2tj2fJrqs87ex3jNoPSZfs9tlun7W+Nx8uzshfrp0bf8t8r72Vjtdce85dJ1cv1A0FVgBsZ4NqXSu5SS37TCJUQ4AAAmIYAhzK9AlwlxDRXlPWdwao/73TYl8a/zWvkOmfgjvtU1MfP9XF27vKly3PKEyd9y3+vvNfwV37d+R4YtfOxUfbh1weOQYAbG+AyNyspT/nn0Ah9I8ABADANAQ5legW42ji1vqJsbIBrcNzf2W6Z5gq2arnOZcitcBtb/u7ytr1ffex//n9j23cmdOZAgBsd4OonTffyyZQ0QmXqjcxhd7lJycVcNQpwAAB8EzvA1Zew5Qe8xk796buEssycAe42Q5VZlngv8FUnQWpj6tyqt+83rZw7QwJca3lb369Wh5klnV3LO+dEgJsQ4CoHuEfa1gh9YwYOAIBpxA5w/TB26s9yAe6yFLN8HdmgGbjUPaaePcDdKe/AALfE6SnATQlw6bth6fM7JRqhbwQ4AACmIcChzGIBLnMN2/3tNmkfU8+8hPJuedver37NYHu5Ho0ANzHApeM+Fbt92ufWwDaeqhG6IsABADANAQ5lHhng6iGlGeBK4+Db0sJhAe4arHaZMXXupiK5G5v0Kn/f8tZCXu4mJtlynQ5pV78xTOs5nA+F7f8/I8BNDXC5adi2Z2qEbghwAABMQ4BDmccEuFS5nX7bzwhUbtm/O6TT0CWU52edx9Sdd6vsvm6yb/nvlfe2rco1bV112PYzAvfukZG/MUr7/88IcJMDHMYQrdMBAGBtROtLo5U3Gur30eTDVDfHtH/AHSkFOAFuETQyAABMI1pfGq280VC/D2bMTUuO+4f8JpwAJ8AtgkYGAIBpROtLo5U3Gup3Pk6HXW3Z453lnT+MACfALYJGBgCAaUTrS6OVNxrqd14avxO3omsxBTgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKGw31ux0EOAFuETQyAABMI1pfGq280VC/2+HpA9zb29ssCnDzopEBAGAa0frSaOWNhvrdDk8d4Ob24+ODJEmSJBfzqQPcnJiBm5ePD98SAQAwhWh9abTyRkP9boenD3BfX1+TtYRyfjQyAABMI1pfGq280VC/22ETAW6NM3pbRyMDAMA0ovWl0cobDfW7HQQ4AW4RNDIAAEwjWl8arbzRUL/bQYAT4BZBIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKG42l6ve4L1KxPy7zvrtDOv34O49nrjILcCMC3HFfpKLYp/ypekqHXflEPqZ9UaSi5O4Q6VR7DF2NzOmwW6QhAAAgEuW+dNjYZBmG9v0R9mlN1Ov3dNhVxp9F8ZjAI8D15XLOCnALzcAd96koipQ9V0+HtCv97bivBbbLa7ce4rKN+KXuikKDDADAPSp96YCxyVIM7vsD7NOayAa4SliYL0CUWU+AO0+abOGcEODGBLjrrFrmDDl/29H2bdHl1eG+MZifrkZmqYYAAIBIVPvSaWOTn2B437/+fVoT9wNcekjwFeB+HgFuVIBrazjO32zcm10T4LqXUQhwAADcJ79kbtzY5CcY0/evfZ/WRK8Alws55VnQ7DLLy8zd7TnV41E/duelr/nj0zYGbjxeL1MmmJVfk1su+v3+3eW/bKz22mN+ie7duurGNXALB7jsNxinQ9oVu9TZnlxet/VGR4ADAGAaj**7NjkhxjV9698n9ZE/xm4Ut0d96mo1GVzmeXpsO/8e/nYXYNU6zCu8X6peYxzS2cz4+e+M3D3yp8r8zWEFtUH79bVPQS4pQNc5uLZ/Dcd5ZdcUvvGZ99SEuAAAJhKsy8dMTb5Qcb1/evepzVxP8DVl6Se67ZR7fcC8nFfmcW6Hbte93lozp5WZ1nPZcxtoz4bO3oJZaX8be9XP+9G1lXjrQW4hQNc/UTqns6/Te1qcFJKAhwAAFPJ9aVDxiY/zdi+f837tCb63IWyUm+ZZYptSxZvM1KZZYjnULLrvcKsGixrx7PrGr3aDNiQANda/tb3qwW4AXXVhQC3ggBXOeitCfx73a1M8o0ABwDANLru6tg9NlmG0X3/ivdpTfS7Bq7yhB43NLn+HFbpurHcDNwlwPUKJ13Hc/YAd6f8**c1OGpALeGAJe+G5y23y7r/g2T7SLAAQAwjba+9N7YZCmm9P1r3ac1MTjAdSxX/H5K85q17FLG/fF7lqrH8Wk/njMvobxb/rb3qy837VFXPRDgVhLg0nGfit0+7XPrYjd0O9OhCHAAAEyjtS/tHJssx6S+f6X7tCaGB7iWm46cDmn3/YPG1b/flhJmAlz57/cO0iVY7TLHM1umzI1N2gJc7veX75a/FvJyNzG5W1f1usjudrnM+ZDY/v9vBLipAS43NVs+qK3rZbc9/S/AAQAwjfa+tGNssiDT+v517tOaGBPgbs/ruDV+5e+7Qzq13cQk3R7ocd+Hy/Fse07ttv65cXN2Nqv0umuQu1f+27Yq17Q1b55zv67uX59ZLXP+Rint//9GgJsc4DCGrkYcAADcJyZTOpEAACAASURBVFpfGq280VC/c9Iento5pv0PTdAIcALcImhkAACYRrS+NFp5o6F+Z2TMTUuO+x+727wAJ8AtgkYGAIBpROtLo5U3Gup3HKfDrrbs8c7yzhUgwAlwi6CRAQBgGtH60mjljYb6HU/jd+JWfi8GAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdnj6APf29jaLAty8aGQAAJhGtL40WnmjoX63w1MHuLn9+PggSZIkycV86gA3J//8808qfv/hTH58fFTv9kOSJIe7gj59UN+/gnI8q+p3Qz57gPv6+prsdXuLH6wn8hbgVlAWkiRDGqwfFTDUL2dyCwFuru0tfrCeyHKAG0JRFDPOqwIAEJPi9x8Bjup3qwpwAtwSCnAAAIyn+P1HgKP63aoCnAC3hAIcAADjKX7/EeCofreqACfALaEABwDAeIrffwQ4qt+tKsD9dID7P+nw/1JK//6/yx/8BRXgAAAYT/H7jwDH2et3/++U0v/7n7Sb6Xljn3923Jh53Hs9vs5mVYAbHuB2//W/nY3q6b/+z+wn47PZJ8CdDrtU7I/VDkuAAwDg3J8+Q4D7138q+9U9huKQ+h0eLC5j1Luv6fu8KWUpvc+qA9zwuphFAW7iDNy//pNS+t90ODz2ZHw2OwPc6ZB219+3EeAAAGhQ/P4TP8DVx1CH/0mnJMTNVb/zBJn/m44ppeO/ppVt3QGu7z7OUxezKMAJcEvYFuBOh10qdod0Sikd9wIcAAA5it9/gge4/Hho91//+/OzGU+iADf2vQS4VbiqAFdbGpD+/T8C3O9+SygFOAAA8hS//8QOcJfZtsZgePAX48zW7+96kPkOQ9VLgf6T9i2vyV0ydJ0dbYaky/Z7bLd1H/qOmS/nzo3adoeUrWsfyw6pi/2/M/WcrdNqHQ1SgHtggLuciOXGaf/v60kpwAlwAACMo/j95wkCXGb81PY4h9Xv75YAl8oB5TyjVB6TNsNPftap/rzdf/2ndMya14XdDXB9x8yNcff997pXtqkzcNkAV67ncuC87Uuz7gcpwD0qwJ0PTDPFW0J5a2QEOAAARlH8/hM7wLWNn9pm5jisfn+3BLhaiDrPCH3PBI0NcA3/9Z872y3bd8x8/n/j3KiF/qFle0iAy80KjpmVbFOAe1CAa22ABLjitwAHAMAUit9/njjAmYGbXL+/25dQlp8zZ4C7zZjd6Bng+o6Z60sna1xfP7RsDwlwtXrOlWnS9Z4CnAC3WCMjwAEAMIri95/YAc41cI+t398/GeAuywHLoWjIDNzAAHcvaA0tmwC3ElcR4FqngyeueX0SBTgAAMZT/P4TO8BdBuf1cZK7UM5Vvz8Y4DJj4fvbLdt3zNz2vGllE+BW4joC3HW6tvo3NzE5K8ABADCe4vef4AEuM4Zy/dus9TtngKuHpmZIKh2321LHvgGu/5j5ehfHyjly+J90arsRS4+y9Q2Gveri99gAlw+rrf8X4B4X4Con34XjvyyhvDUyAhwAAKMofv+JH+B+N2/PLrzNV7/zBLg/ldv7t906v3HL/EE3MSk9p3IudJU5Vd+vdb/vl61tH7P2qItxAS5/w5bW/wtwEwMcR9knwOUQ4AAAeJ4AR/XLEQpwAtwSCnAAAIyn+P1HgKP63aoCnAC3hAIcAADjKX7/EeCofreqACfALaEABwDAeIrffwQ4qt+tKsAJcEs4NsABAAABjup30wpwAtwSCnAAAIyn+P1HgKP63aoCnAC3hAIcAADjKX7/EeCofrfqswe4t7e3WRTg5rUc4EiS5AiD9aMChvrlTD5zgJvbj48PzmhRFCRJcoJL9+Ukf96nDnBzMvf2ts7Hx8fSRQAAIDTR+tJo5Y2G+t0OTx/gvr6+JvuIQLh1NDIAAEwjWl8arbzRUL/bYRMBbo0zeltHIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKGw31ux0EOAFuETQyAABMI1pfGq280VC/20GAE+AWQSMDAMA0ovWl0cobjbH1e9wXqdgd0mnm8qz1fXOsqSx9EOBGBLjTYdf5myy7Q5TDvxzZRuaYUlF8uzv8fLkAAIhCtECU7/v3xlAzUa/f/Hh1l6pVfEqH3RLhZan3fXBZaufzo/ZPgBsR4JoHqv5hwD0ajfglvN3q8ZTSTogDAKCV8AGuPoY6HdJOiBtNPsDt07Hx2E+PW49pXxRpf7z/zMjk6jsd9w85nwU4AW4R6o3MYZdSsa8+53RIqdilFXwzAwDA+ogd4C6zHrVR/emwW8msTDz6BLhrmPrZkLyFAPez9SrAPTDAXdfTHq9T2BqkG5VG5jLb1vhg12flAADAjdAB7jLb1uz7fTE+lrEBrnn91/k512WAjWN0OXZ9lgnmlnFe37v+vsf9OdBXXnP5e3U79X0aVqYc1bJ8f7lw933rdfZDKVWAe3SA+8GDGYlcgGvUYdvjAADgCQJcZvzU9jju0ifAncemmcdu4SUT8A6lMNQY9/a5fiw/A5cNcOX3Loey24szQWlUmbrKcnl9pR7uB7SfHPcLcA8PcF1pfbtUGpm2mba2mTkAABA7wLWNn9pm5nCXPjcxydVrJbx01v852ORn5LpC94AAVwtd9wPn2DJ1lSUfAPMzmvW3LdX5A09iAe7RAc6yySxDApxv4QAAaPK8Ac4M3BjuzcC1TSy0zT41xrD1ZYo9wuHlHfoHuNqTcmPpynWSo8vUow5y12f2nJi5zcY96FwW4AS4RXANHAAA0wgd4FwDNzv3l1DmlwFmx6vlYNRrdq6Lxwe4qZNdcwe4VN7OA1bjCXAC3CLk7kJZ/8kAd6EEAKCd0AHuMrit37XPXSjH0+smJpffKateQtYxXq08f+ydFh8Y4Ga6++NjAly61J8AJ8A9CX1/B84aeAAA8sQOcKn1d+D0/ePodxfK5vVd9Wvg9uVBbe0YXa/xqhyj0yHtOg9aPmTNE+D6lSm37fb3GRPgjmnf9iPprTdguff/dgQ4AW4Rcp3O6XAOcVc14AAAtBM+wKXmjTb0/ePpF+DS9/LIS2W33Q2y7Rquxs1R+ox1LzN5fX5GoPqy+wHufpnys73t7zN2Bq768wtFI7TWt3vv/+0IcFMDHEYRrdMBAGBtROtLo5U3Guq3jdzsWGwEOAFuETQyAABMI1pfGq280VC/LRz3T7ciToAT4BZBIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKGw31ux0EOAFuETQyAABMI1pfGq280VC/20GAE+AWQSMDAMA0ovWl0cobDfW7HZ4+wL29vc2iADcvGhkAAKYRrS+NVt5oqN/t8NQBbm4/Pj5IkiRJcjGfOsDNiRm4efn48C0RAABTiNaXRitvNNTvdnj6APf19TVZSyjnRyMDAMA0ovWl0cobDfW7HTYR4NY4o7d1NDIAAEwjWl8arbzRUL/bQYAT4BZBIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKGw31ux0EuEcHuNMh7YoiFUWRdofTXMctPBoZAACmEa0vjVbeaMxdv8d9kYrdIZ1a/j92O0uyprJMQYAbEeBOh10qLqEs53dQO6a94JYl28gcUyqKb3eHny8XAABRiBaI8n3/vmUMhaHU67dtvLo/9tvePAHulA67tYSmGctSO29/ev8EuBEBrsJxn4pil7LtzemQdm1/2ziNRvwS3m51dUppJ8QBANBK+ABXH0NdVi0JcePIB7h96pnXGgwPcOeJi74BMSrZej3uf/S8FeAeGeC6/rZx6o3MYZdSsa8+53RIqdilFXxjAwDA+ogd4C6zIbXR/umwW8lsTTwEuJ9gHavrBL**bjjvj5lLciVqTQyl9m2xge+PisHAABuhA5wl9m2Zt/vy++xDA9wlxB9G6tWnzskwOWWa15DTnY7+2P1NZe/V7eTKXvp3hJjli5Wy/L9JcLd9/3eQtoXzS8eskwsaxcC3IMC3N2/bZxcgGvUU9vjAADgCQJcZozk8pPRDA1wp8O+VM/N68PmmoHLbqc8i1UOOrcXZ4JSY1w9/Jq2bIDL3L+iK6DdJmm6QtwMZe1CgBPgFqHSyL**LXNzAEAgNgBrm2M1DYzh7v0u4lJx+zScV/5+0MDXG0751DUNQN4DkCN82Jg4M8GuFpZ+iw9rdRts1CzlLULAU6AW4QhAU79AQDQ5HkDnLHTGMZcA9e85OeHAlztSbltV66HrC9HnOXOmh3XYfa8dvC7/po345la1i4EOAFuEVwDBwDANEIHONfAzc6wAHdZKlj++0/OwI0McFPDz9wBLpW3c33ND8wiC3AC3CLk7kJZ/8kAd6EEAKCd0AHuMuit383PXSjHMyjAZcao9eevKsDNdPfHxwS4VAu/j79TpQAnwC1C39+BswYeAIA8sQNcav0dOH3/OIYHuFJd35b9TQ9w9eAyT4D7vu6s8tLTIe1KD+S23f4+YwLcMe0bY/vmdu6XtX6zlHv/ryLACXCLkOt0TodziLuqAQcAoJ3wAS41b7Sh7x/P8LtQ1m7jP3kJZboFwz4/I1B**0A1yhz49b8+Vnd9vcZOwN3XX7a/MmE5na6y/r93vf+X0WAmxrgMIponQ4AAGsjWl8arbzRUL+52bHnRIAT4BZBIwMAwDSi9aXRyhuNzdfvcb+Z6ycFOAFuETbfyAAAMJFofWm08kZD/W4HAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdhDgBLhF0MgAADCNaH1ptPJGQ/1uh6cPcG9vb7MowM2LRgYAgGlE60ujlTca6nc7PHWAm9uPjw+SJEmSXMynDnBzYgZuXj4+fEsEAMAUovWl0cobDfW7HZ4+wH19fU3WEsr50cgAADCNaH1ptPJGQ/1uh00EuDXO6G0djQwAANOI1pdGK2801O92EOAEuEXQyAAAMI1ofWm08kZD/W4HAU6AWwSNDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNB5Vv8d9kYrdIZ0esvXh9CvPKR12RSr2x37b6/G86WWaDwFuZIA7HXapKIqqKzq5106ukTnuUyqKbw+5yjxWn7M7PL6sAACskWiBKN/3l8dSu5a+f18Zb+2yT0K9fucaq64rwF2C2aoCXN8yzYcANyXAVQ7Uzx+8yDQbmZTKn53TIRPijrXHTinthDgAwEaJHuBOh12t7981Q9xxX33sdEg7IS5LNsDNMFZdV4DrSy7AHdO+KFI9q80xA/fTCHCzBbh0a1SCnQOLcLfTuYSzcl0edikV+9rTDikVuxSsUQEAYDrRA1yDxjgqP4uSHYOhR4BLo8aqAtz6EODmDHClEyN3src+FuykmYPBAS4T6FJKzVk5AAA2wtMHuLawUZ+VQ0qpZ4CrhJjzv+uzmfXxanP8en7ddVlm4/hcjlufZZtjxsvZQFlbZlvsD5UAl1tOet3v67arz9mnIaPzapm+w+OUbXYhwM0Z4E6HtLs2KI3G5Xqylx87H+AN5re7jXhjtu0S4BqNddvjAAA8Oc8V4DIzJuVxVeWpLY9vnP4zcNe6GxPgmq85Hkrv0Rj/3lm2OWK83Ahwl/BWPnVu11b2nYGr7NOlDANmHbMBLrfNmQb9AtxsAa5+YGonyeUE3e1KB3PDDVCuET/sOm5O0jbT1jYzBwDAkxM/wH0PdLM3J2mbaXPJSpb7AS4/Vh0U4DrrvmVionO8O3y8fC9QlsvSO8DVwtp55qz/jFk2wE3cZhcC3JQA1zIVWzmY5anb61Tq5YBueQ33vU7nehOTUhvTGeC2GIIBANsmfoCrch1b1QfzZuD60eculNWx6pgZuFLobrm+rnHny7alluXtDxgv9wuU066BmyXATdxmFwLclAB3J3x9P6f0jcTpkHaXg3fcb/cuSn06neO+tIzSNXAAAFR4tgCXUm0w7Rq4QfS7Bq7M2GvgUjWs9Zqda2foeFmAE+AeGuBu3xAdv0/C7+nlY9pvuPEZHODSeYllfWmlu1ACALbK0we4y5ipHjC2vIKpi+EBLh80egW47yeXZtfaljPeYeB4ud8Sytw1ZwLcql1NgLuefPt95SCeX7tLuw03PvVGZl+kygndWEKZUuvvwFkDDwDYIrED3DHta4PZxhLKlFp/B07f32R4gLvewKN0HK53c+xYsrivpqnK8ckew9Mh7ToP2LDxcjZg5kJeS4DruuSp8t6lerl31/jpAS5/fWLb/wW4hwa4jhN54z9C2eh0LmGsKJk7wa/B7qoGHACwVWIHuJS5Zio/uK1fy6XvzzMmwNVvJFPsj3dn4G7hqHG3yNL79vwZgfpr+oyXW39moHKO5ENU+ecG6j8j0CxPdTawa9w+PcDVX9P9fwFuZIDDNKJ1OgAArI1ofWm08kZD/T6K9V32JMAJcIugkQEAYBrR+tJo5Y2G+n0Qx/3qrrkU4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdhDgBLhF0MgAADCNaH1ptPJGQ/1uBwFOgFsEjQwAANOI1pdGK2801O92EOAEuEXQyAAAMI1ofWm08kZD/W6Hpw9wb29vsyjAzYtGBgCAaUTrS6OVNxrqdzs8dYCb24+PD5IkSZJczKcOcHNiBm5ePj58SwQAwBSi9aXRyhsN9bsdnj7AfX19TdYSyvnRyAAAMI1ofWm08kZD/W6HTQS4Nc7obR2NDAAA04jWl0YrbzTU73YQ4AS4RdDIAAAwjWh9abTyRkP9bgcBToBbBI0MAADTiNaXRitvNNTvdhDgBLhF0MgAADCNaH1ptPJGQ/1uBwFupQHuuC9SsTuk0yxbO6XDrkjF/jjL1uZAIwMAwDSi9aXRyhuNR9XvvGPSZVh6XD13HQpwIwPc6bBLRVFUnfvE2FiAO+5TKopvD7mdP1afszs8vqwAAKyRaIEo3/eXx1K7lr5/Xxlv7bJPQr1+5xqrxg9wS4+r535/AW5agKsciPkPznysP8CdDimVi3c6ZELcsfbYKaWdEAcA2CjRA9zpsKv1/btmiDvuq4+dDmknxGXJBrgZxqrxA9zcLD+uFuBmC3Dp1qisKCddWP5Eq3O307mEs3KRD7uUin3taYeUil3SqAAANkf0ANegMY7Kj1+yYzD0CHBp1FhVgKuz/LhagJszwKVj2tc/FJcPStvU9fVDcbxOc1/+nv2w1LfV9gGsLTUo9ofFT7Q6gwNcJtCllJqzcgAAbISnD3BtYaM+K4eUUs8AVxmrnv9dn82sj0GbY9Lz61rHonfGvnVu26+/LjduDTqudg3cmgPc6ZB25Qal0cA0p65va79rJ0HjQF9Onlw4rHzwMs9re48ludeIN2bbLgGu0Vi3PQ4AwJPzXAEuM6tRH1fde3zj9J+Bu9bdmADXfM3xUB+vdo9969zGqeXnXMNVdUAbdlwtwK02wF2+jShNGR12bd9KfJ9855Ngn5pfLnV/WCrluL2+7XnLT/XWyTXih13HzUnaZtraZuYAAHhy4ge4y/ik7eYkb**q71kZVnuB7j6WHVEgOus+35j3zptY+HqGDf2uFqAW1OAq027Vg5wZlo2N0XbdkB7f1jKjVvr82IEuDLXm5iU2pjOAOdbOADA1ogf4Kpcx1bffX9XgDMDV6fPXSirYWTMDFwpdPdYknh3eWLm/Up/aIxxo46rBbg1BbiuA9Hz26G1nmiPpk+nc9yXllG6Bg4AgArPFuBSuox/rp29a+AG0e8auDJjr4FL1UDVa3aunSEBLuq4WoCLEuA6pmcrz+pzok2e6q1PmS/P4ACXzkss60sr3YUSALBVnj7AXQbK9XGNu1DmGR7g8kGkV4D7fnJpBqzf2Le5iWnLHrvKPnRbjxpXC3BhAlxmKcD5wbQrPdDvRGvZVuuFldVvpSLcxGRfpFSrpuoSypRafwduRbsFAMCPETvAHdO+NmhvH+s0fwdO399keIDLhKfrHRc7roHbN27y8X18+ox982XI3bCkup01j6urXzy07GMtQNavRWz/fxMB7oEB7va8Hrc7vXeiXR6srfnNLx+4nVi3dcEBllBewlhRMlfaa7C7uqJdAgDgR4kd4FLmuqbmLMz5abuUu94JVcYEuPqNZIr98e4MXHWc2RyL3hv71mnc+r/jOK9zXJ2fKW5///zr2//fRIAbGeAwjWidDgAAayNaXxqtvNGIWr/xfyj8mPY/fE2mACfALULURgYAgLUQrS+NVt5oRK3f8AHuuP/x8gtwAtwiRG1kAABYC9H60mjljUbU+g0f4BZAgBPgFiFqIwMAwFqI1pdGK280otavADccAU6AW4SojQwAAGshWl8arbzRUL/bQYAT4BZBIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9vh6QPc29vbLApw86KRAQBgGtH60mjljYb63Q5PHeDm9uPjgyRJkiQX86kD3JyYgZuXjw/fEgEAMIVofWm08kZD/W6Hpw9wX19fk7WEcn40MgAATCNaXxqtvNFQv9thEwFujTN6W0cjAwDANKL1pdHKGw31ux0EOAFuETQyAABMI1pfGq280VC/20GAE+AWQSMDAMA0ovWl0cobDfW7HQQ4AW4RNDIAAEwjWl8arbzRUL/bQYAT4BZBIwMAwDSi9aXRyhsN9bsdBLgRAe502KWiKFrdHU6LHMxI1BuZ0yGloqi5Sylbk8fmc3eHljeqP7dtmwAABCPagD1aeaOhfreDADciwFU47lNR7JLMNoxsgKuFq8Ou5bEiNep7nwln11B4LD/x2BH2AAAIRLQBe7TyRkP9bgcBToBbhD4BLp1S2hUp7Y+l59QDWYl9kVKxr/5fWAMAPCvRBuzRyhsN9bsdBL**bjjvkjF7tBYrld+/Pbv0yHtyssw95mIUn9OZtuR6BXg0jmEXavjXiCrB7x6oAMA4JmINmCPVt5oqN/tIMA9KMDlHz+mfVHcAslxnwlj16BWDnGNbZ3SYRc7xA2ZgTucav9uo/ac4/5y3ZsQBwB4QqIN2KOVNxrqdzsIcI8KcJeQVbmhyXGfimJ/myE6B7h9Y0ng+SYp18fP22lMyp0OaRd46WafAFeZQTvm**rbqS65PK23UKQAwA8H9EG7NHKGw31ux0EuIcFuEsQu82SNQNd2zLLyjbrSydr5lZbRqDPXSgryyVHzMCVuc3G3dsGAABBiDZgj1beaKjf7SDAPTDAVWbJMjNmQwJc1KDWRt9r4MoMvQYux/Uulk9WnQCADRJtwB6tvNFQv9tBgHtkgCvNulVn464vzS+hrAa783Vzz/bbcmMC3HUWresulHfvOnkU4AAAz0G0AXu08kZD/W4HAe6hAe7y990+7TPXsd1uYtK4YUlRu45r11wueTqkXeBpuTEBLqX2GbTc78DtM8slDzvXwgEAnoNoA/Zo5Y2G+t0OAtyjA9xlBq1rpu14CWhd17Wdas+JfAfKlMYHuNtza9fLtWXZfdd1dQAABCbagD1aeaOhfreDADc1wN3lcsv/TMJovQZuA2hkAACYRrS+NFp5o6F+t4MA9+gA13G7fwEOAACMJVpfGq280VC/20GAe3CAO+7zs2+3vwlwAABgBNH60mjljYb63Q4C3IMC3O2atY6AJsABAICxROtLo5U3Gup3OwhwDwpw6EYjAwDANKL1pdHKGw31ux0EOAFuETQyAABMI1pfGq280VC/20GAE+AWQSMDAMA0ovWl0cobDfW7HZ4+wL29vc2iADcvGhkAAKYRrS+NVt5oqN/t8NQBbm4/Pj5IkiRJcjGfOsDNiRm4efn48C0RAABTiNaXRitvNNTvdnj6APf19TVZSyjnRyMDAMA0ovWl0cobDfW7HTYR4NY4o7d1NDIAAEwjWl8arbzRUL/bQYAT4BZBIwMAwDSi9aXRyhsN9bsdBDgBbhE0MgAATCNaXxqtvNFQv9tBgBPgFkEjAwDANKL1pdHKGw31ux0EOAFuEZZoZI77IhW7Qzr9+DsDADA/0Qbs0cobDfW7HQS4KQHuuE9FUXwrHPSmq5E5HXapKIq0O8xZm6d02DlGAIDnIdqAPVp5o6F+t4MANzLAnUPGPh3LDx73tdBxTPuiSPvKk/ow9nVxaG9kzkFrv99PCFvPX38AAEQbsEcrbzTU73YQ4EYFuHNAuD9DJMC10drIHPfnYHw6pN3oOnj++gMAINqAPVp5o6F+t4MANyHAFR0J4boMsOx34Lss57v97Xsmr/11+dDYvK7rUraLaw0xbY3McX+t10sdte5AdT+vddBV7+W6arservH4JUhaJgsAWBvRBuzRyhsN9bsdBLhRAe4y0L8T4tpmgk6HffrOYblrs3Kv6xPgms85HtYZOLKNTG3W7RzGdqkx0Xm59rBSF6dDOtzqK1/vlbo67pvbrs/6NZ7jOjoAwHqINmCPVt5oqN/tIMCNDHAp1WZ7skGu51K+67LBztf1CHCTlh3+LLlGpnFd4WV/qvt8b2YupV4B7rKd8rar73+5Fq/+NqdD2uVCJQAAP0y0AXu08kZD/W4HAW5CgLtym41rDOzbA9z3a5rLKMfPwJWWZq58lqjZyOSWpV73pxnqukNqnwB3CWxtga6+dLJmhJAMAHhuog3Yo5U3Gup3OwhwMwS4M5mw0RHEKs+bawbuVpRS+FhpkGs0MvWfZGgLTDMGuMq26jNrgWYzAQDbJNqAPVp5o6F+t4MAN1uAS/2CWObaq+ZPEuQCSH7pYOePU19C0RpDSLWR6bq2rP63PncA7Rngro/tj+djUD1QPe80lcte3wAABxxJREFUCgDAMkQbsEcrbzTU73YQ4EYFuGPaN5ZL5gJWJgTUQ9VttqwZ4LKzbY2Zu+o1cPvGe63zeq1KI3Nvtqu2H9drD+vB+Pv/A2YrL9veZa53y77P6ZB2a0zEAIDNEW3AHq280VC/20GAGxXgUmrcxr5ttqa0NPD698rNT3aHdGrM3OVf1/j5gf2xEUqq19atM7ylVG1kGsG0Qeb6uPqSy+Z0W+fPCDS23TKL2fhZgpUuSQUAbI9oA/Zo5Y2G+t0OAtzoAIcpaGQAAJhGtL40WnmjoX63gwAnwC2CRgYAgGlE60ujlTca6nc7CHAC3CJoZAAAmEa0vjRaeaOhfreDACfALYJGBgCAaUTrS6OVNxrqdzsIcALcImhkAACYRrS+NFp5o6F+t4MAJ8AtgkYGAIBpROtLo5U3Gup3OwhwAtwiaGQAAJhGtL40WnmjoX63w9MHuLe3t1kU4OZFIwMAwDSi9aXRyhsN9bsdnjrAze3HxwdJkiRJLuZTB7g5MQM3Lx8fviUCAGAK0frSaOWNhvrdDk8f4L6+viZrCeX8aGQAAJhGtL40WnmjoX63wyYC3Bpn9LaORgYAgHFcxyTR+tJo5Y2G+t0OApwAtwj1RmaOmVKSJJ/d8pgk2oA9WnmjoX63gwAnwC1CLsAtfd6QJLl2BTi0oX63gwA3cHuYBwGOJMnhCnBoQ/1uBwFu4PYmczqkXVGkoijS7nCaZ5sBEeDImL6/FKn49Zo+V1AWcosKcGhD/W4HAW7g9q4c90Uqdoc0LIId037jwe2KAEdO9/2lSEXxkt6zf/9Mr7+KVLy8p79//6bP11+puHx5dHNEEBPgyGUV4NCG+t0OAtzA7V0ZFeBOh7Qrdkl+E+DIWXx/SUVRpJf3zN8+X9Ov0t8+X3/Vgtcl4A0MYwIcuawCHNpQv9tBgBu4vSujAtxxnwoBLqUkwJHz+J5eiu9ZtrLnGbfv2blmgPvbCHl9FODIZRXg0Ib63Q4C3MDtXakGuFM67IpU7I/pdNiVlijt07H8/MrypVKQK10Xd3V/TE+NAEfOYz2onT3Prv16/aw+rxG8zgHwHODO/y6/5u/fZmBrBrhLiLzYCIOXkDhl2SbJbwU4tKF+t4MAN3B7V7IBrnJ92/l6t6KcxHIzcMd9M7BdAt0zXysnwJEzmZtF+3xNv4pf6fXz+7H2Gbjr88YEuOZr3l9L7/H+kopKOcYt2yT5rQCHNtTvdhDgBm7vSjbA1ZZUnmfjvmfhmgGu/aYmjdc+GQIcOZfVm5X8/ZsPa83H6ssvRwS4ziWY53LlZ+Sq4ZJkfwU4tKF+t4MAN3B7V9qWUJa5G+AuM23Z5ZJPfr2cAEfOZ3UZZXP55Pdzqku1q88ZMwN3CY+5pZH1pZM1h1x3R/JbAQ5tqN/tIMAN3N4VAW4aAhw5o+WZsJYZrvw1cGXHXgP3txrWes3OkRyrAIc21O92EOAGbu/KLAHOEsobUc81ci2+v5yXQ36+/mq/K2VngGsuxbxt916Au1r5WYN8ICQ5TQEObajf7SDADdzelXkCXLrdtbLy0tyNTZ4MAY6c2feXVPx6SS+5687+9glwmR8GvwSyrmvgXsoBrXbTkuuyzcYNVjIBk2Q/BTi0oX63gwA3cHtX5gpw34+3/MTAkyLAkXN7vZ1//ScFzvYJcJVr2i43OLk3A3cOfVdblm76GQFyNgU4tKF+t4MAN3B7mAcBjiTJ4QpwaEP9bgcBbuD2MA8CHEmSwxXg0Ib63Q4C3MDtYR4EOJIkhyvAoQ31ux0EuIHbwzwIcCRJDleAQxvqdzsIcAO3h3kQ4EiSHK4AhzbU73Z4+gAHAAAAAM/CUwe4R2z7v//7v0mSJElyEQU4AY4kSZJkEAU4AY4kSZJkEAU4AY4kSZJkEAU4AY4kSZJkEAW4v3/Ty8vLTQGOJEmS5FrdfIAbEt4EOJIkSZJLuukANzS8CXAkSZIkl3SzAW5MeBPgSJIkSS7pJgPc2PAmwJEkSZJc0k0GuCkhbukDRpIkSXK7bjbAjQ1xSx8wkiRJktt10wFuTIhb+oCRJEmS3K6bD3BDQ9zSB4wkSZLkdhXgBrr0ASNJkiS5XQU4AY4kSZJkEAU4AY4kSZJkEAU4AY4kSZJkEAU4AY4kSZJkEAU4kiRJkgzi0wa4r68vkiRJknwqnzLAAQAAAMAz8pQBjiRJkiSfUQGOJEmSJIMowJEkSZJkEAU4kiRJkgyiAEeSJEmSQRTgSJIkSTKIAhxJkiRJBlGAI0mSJMkgCnAkSZIkGUQBjiRJkiSDKMCRJEmSZBAFOJIkSZIMogBHkiRJkkEU4EiSJEkyiAIcSZIkSQZRgCNJkiTJIApwJEmSJBlEAY4kSZIkgyjAkSRJkmQQBTiSJEmSDKIAR5IkSZJBFOBIkiRJMogCHEmSJEkGUYAjSZIkySD+f3EvJrP6P9gFAAAAAElFTkSuQmCC还有就是我是三相6/4电机,period是30吗?

sunsson 发表于 2020-4-1 13:50

卡卡罗特Mayday 发表于 2020-3-31 21:19
我的界面跟您的有点不一样,我用的外电路是这样的,请问这样设置是Td开通角1°,Pw关断角30°的吗?还有 ...

简单讲,开通角和关断角都是指电角度而非机械角度,与齿槽数没有关系,通常定义转子齿中心与定子槽中心为“0”位,此位置电感量最小,为了获得更大电流输入,开通角需要设在电感较小的位置,甚至超前,“Lead Angle of Trigger”就是开通位置超前于“0”位角的电角度,“Trigger Pulse Width”就是导通的总宽度(电角度),导通宽度有了,关断角就确定了。

卡卡罗特Mayday 发表于 2020-4-1 16:45

sunsson 发表于 2020-4-1 13:50
简单讲,开通角和关断角都是指电角度而非机械角度,与齿槽数没有关系,通常定义转子齿中心与定子槽中心为 ...



谢谢您的解答!我昨天图片没能上传成功,我的外电路打开来没找到Trigger Pulse Width这些,我的是如图这样的,而且瞬态仿真有时候转矩是负的请问和角度有关系吗?

Well_简单 发表于 2020-9-3 17:38

卡卡罗特Mayday 发表于 2020-4-1 16:45
谢谢您的解答!我昨天图片没能上传成功,我的外电路打开来没找到Trigger Pulse Width这些,我的是如 ...

层主解决了吗?我也找不到Maxwell 2D外电路里开通角和关断角的设置?
页: [1]
查看完整版本: Ansoft里有调节开通角和关断角的办法么?